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Abstract
Behavioral economic demand methodology is increasingly being used in various fields
such as substance use and consumer behavior analysis. Traditional analytical tech-
niques to fitting demand data have proven useful yet some of these approaches require
preprocessing of data, ignore dependence in the data, and present statistical limitations.
We term these approaches “fit to group” and “two stage” with the former interested in
group or population level estimates and the latter interested in individual subject
estimates. As an extension to these regression techniques, mixed-effect (or multilevel)
modeling can serve as an improvement over these traditional methods. Notable benefits
include providing simultaneous group (i.e., population) level estimates (with more
accurate standard errors) and individual level predictions while accommodating the
inclusion of “nonsystematic” response sets and covariates. These models can also
accommodate complex experimental designs including repeated measures. The goal
of this article is to introduce and provide a high-level overview of mixed-effects
modeling techniques applied to behavioral economic demand data. We compare and
contrast results from traditional techniques to that of the mixed-effects models across
two datasets differing in species and experimental design. We discuss the relative
benefits and drawbacks of these approaches and provide access to statistical code and
data to support the analytical replicability of the comparisons.
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Introduction

The concept of behavioral economic demand (hereafter “demand”) has proven useful in
a variety of settings including drug addiction (Acuff et al., 2020; Aston & Cassidy,
2019; González-Roz et al., 2019; Kaplan et al., 2018; Strickland, Campbell, et al.,
2020a; Strickland & Lacy, 2020), public policy (Hursh & Roma, 2013), health
behaviors (Bickel et al., 2016), and others (Gilroy, Kaplan, & Leader, 2018a;
Hayashi et al., 2019; Henley et al., 2016; Kaplan et al., 2017; Reed et al., 2016;
Strickland, Marks, & Bolin, 2020b; Yates et al., 2019). Demand has been evaluated in
both humans and nonhuman animals (Bentzley et al., 2012; Fragale et al., 2017;
Strickland & Lacy, 2020). Methods for elucidating trends in consumption and demand
have included experiential self-administration (Johnson & Bickel, 2006) and hypothet-
ical responding (Strickland, Campbell, et al., 2020a).

The economic concept of demand characterizes the relationship between the con-
sumption or purchasing of a substance or commodity and some constraint, such as price
(Reed et al., 2013). In nonhuman animal self-administration work, demand is captured
by (1) increasing the ratio requirement necessary to obtain the reinforcer, and/or (2)
decreasing the dose of the reinforcer while keeping the response requirement constant.
This ratio of cost (e.g., responses) to benefit (e.g., drug obtained) is referred to as “unit
price.”1 In human work, participants may self-administer or endorse their hypothetical
consumption of the reinforcers (e.g., alcoholic drinks, cigarettes) across a range of
prices. This latter approach is commonly referred to as a hypothetical purchase task
(Roma et al., 2015). In behavioral economics rooted in the operant framework, the
relation between reinforcer price and consumption typically follows a nonlinear rela-
tionship, where increments in low prices are met with relatively little change in
consumption and relatively more rapid declines in consumption are observed as prices
increase (see Figure 1). A core aspect resulting from fitting a function to the demand
curve is the rate of change in elasticity, where elasticity is the proportional change in
consumption relative to a proportional change in price (Gilroy et al., 2020).

An in-depth discussion of the various metrics the demand curve provides and their
associations with clinical measures is beyond the scope of this article. For further
discussion, we encourage readers to consult other texts (e.g., González-Roz et al., 2019;
Kaplan et al., 2019; Martínez-Loredo et al., 2021; Reed et al., 2013). In this article, we
will note that change in elasticity is one of several different metrics that a demand curve
provides, along with intensity, Pmax, Omax, and breakpoint. Whereas change in elasticity
is necessarily derived based on the results of regression, intensity, which represents the
level of consumption at free or near free costs, can be derived either by regression or by
observing the data directly (e.g., how many drinks would someone take if they were
free). Breakpoint, or the first price at which nothing is consumed (either by self-report
or by not earning the reinforcer) is most often observed directly from the data but can
be derived using some equations (e.g., Zhao et al., 2016). Finally, Omax (i.e., maximum
expenditure across all the prices) and Pmax (i.e., either the price associated with Omax or
the price at which the demand curve shifts from an inelastic to elastic portion) can be

1 Although we acknowledge the differences between consumption and purchasing and between price and unit
price, for simplicity we will refer to consumption as the primary dependent variable and price as the
independent variable.
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observed from the data directly (e.g., finding the maximum expenditure among the
prices tested) or derived (e.g., via exact solution; Gilroy et al., 2019). Because
breakpoint, Omax, and Pmax are easily obtained from the data and by existing tools
(e.g., Gilroy et al., 2019; Kaplan et al., 2019; http://www.behavioraleconlab.com/
resources%2D%2D-tools.html) and do not fundamentally differ due to differences in
statistical fitting techniques, the analyses presented here will focus on the two primary
indices generated from the demand curve: intensity and change in elasticity.

Fig. 1 Two Common Nonlinear Regression Methods. Subset of Alcohol Purchase Task data from Kaplan and
Reed (2018). Note: Top panel: Individual points in different colors and open shapes and mean values in filled
black circles. The black line shows the best fit line using the fit-to-group approach. Notice that only one curve
is generated for the entire sample, even though there are many individual points that fall above and below the
mean points. Bottom panel: The same individual points as the top panel, now illustrating the first stage of the
two-stage approach where one regression line is fit for each participant
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Table 1. Terms and Definitions

Term Classic Frequentist Definition Additional information

Parameter Values that we do not know but wish to estimate
with data. For demand, these are Q0, α, and
error variance. Frequentist statistical approaches
assume these true population values are
unknown constants.

Effect Effects are parameters that predict the response. In demand, these are Q0 and α.

Fit-to-group
approach

Fitting to means: At each cost, compute the
average consumption across individuals.
Fit a demand model to this single series of
averages or mean values. By replacing the
full data with sample means, overall
variability is ignored. This method is not
appropriate for statistical inference and
suitable for descriptive, graphical, and
theoretical equation testing purposes only.

Pooling data: Data from all individuals is
included and a single, group-level curve is
fit. This variation assumes all data points
are independent leading to incorrect
standard errors for estimators.

This is a fixed effects analysis and in both
cases parameters invariant across the
whole sample are estimated. Typical
demand models exhibit relatively low error
variance in this analysis compared to
models based on individual subjects (i.e.,
two-stage-approach).

The fit-to-group approach is one of several
terms used to describe this method. In
areas outside of behavioral economics, the
fit-to-group approach is also referred to as
(complete) pooling or pooled regression
(see definition to the left and definition
associated with fixed effects) and does not
preprocess data into means.

Two-stage
approach

Fit a demand model to each individual’s data
series separately, ignoring any information
about the sample as a whole. This first
stage produces a collection of fixed effect
estimates of α and Q0 for each individual.
These estimates subjected to an additional
second stage of statistical analysis to make
group comparisons (e.g., t-tests, analysis
of variance).

The two-stage approach is one of several
terms used to describe this method. Other
terms include: no pooling (data from each
subject is fit separately and no data are
“combined” together). One way to think of
this approach is to consider it an “amnesia”
model where nothing about one subject’s
parameters influences another subject’s
parameters (McElreath, 2018).

Mixed-effects
modeling

Mixed-effect modeling for demand data is the
main subject of this article. Mixed-effect
models are models that can incorporate
both fixed and random effects.

In demand, a mixed-effects modeling
framework allows the researcher to
simultaneously model underlying trends in
effects, individual-specific departures from
these trends (i.e., random effects), and
quantify error variance in the context of a
single model.

Mixed-effects modeling is one of several
different terms to describe incorporating
fixed and random effects. Other terms used
include multilevel modeling, hierarchical
modeling, and partial-pooled modeling.
One benefit of these models is the ability
to incorporate additional fixed (and
random) effects directly in the model.

Fixed effects Fixed effects are assumed constant in the broader
population from which the observed data
are drawn. The sample data are used to produce
estimates of these parameters, and the resulting
estimates have with some degree of imprecision
(i.e., standard error).
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Just as there is variability in how demand is collected, there is variability in
how demand is analyzed (Kaplan et al., 2018; Reed et al., 2020) and demand is
typically analyzed in one of two ways. The first approach is to fit a demand
model to the overall group-level consumption. We call this the “fit-to-group”
approach (see Table 1). The second “two-stage” approach is to fit a demand
model separately to each individual dataset (stage 1) and use the resulting
individual-subject demand parameter estimates in subsequent analyses (stage

Table 1. (continued)

Term Classic Frequentist Definition Additional information

Random
effects

Random effects induce variability in parameters
attributable to differences in how individuals
respond. For example, demand analysis might
treat α and Q0 as random effects and thus
estimate a unique α and Q0 for each participant
within a single model. Random effects follow a
probability distribution that imparts the ability for
these effects to vary among individuals.

Error variance Error variance describes what is left unaccounted
for in the model. Error is quantified by averaging
the squared residual (i.e., the vertical difference
between observed and expected consumption)
across each data point in the analysis.

Error variance is an unavoidable aspect of
any typical statistical analysis. The only way
to eliminate error variance would be to
choose a function that exactly replicates the
observed data. Because the broad purpose of
statistical reasoning is to probabilistically generalize
trends to a population larger than the observed data,
functions which replicate the exact data are typically
overfit for the purpose of generalization and thus
statistically they would essentially be useless.
This is why any typical analysis incorporates
error variance.

Ordinary least
squares

The ordinary least squares approach estimates
parameters as those values which minimize
the error variance. This technique of estimation
is used in the fit-to-group and the two-stage approach.

Maximum
likelihood
estimates

Maximum likelihood estimates are those parameter
values that make the observed data “most likely.”
In particular, the likelihood function is the joint
distribution of the data taken as a function of the
parameters. Maximum likelihood searches the
entire space of parameter values to determine those
values which maximize the likelihood function,
and these optimizing values are the maximum
likelihood estimates. Maximum likelihood and
its variants are essential tools for mixed
modeling implementation.
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2). The “fit-to-group” approach is shown in the top panel of Fig. 1 and the
“two-stage” approach is shown in the bottom panel of Figure 1. Although these
approaches are relatively easy to execute, both methods have limitations that
behavioral economists conducting this research should be aware of and we will
describe the relative benefits and limitations later in this article. To overcome
some of these limitations, recent efforts in behavior analysis (Bottini et al.,
2020; DeHart & Kaplan, 2019; Gilroy & Kaplan, 2020) and behavioral eco-
nomics (Acuff et al., 2021; Collins et al., 2014; Hofford et al., 2016; Kaplan
et al., 2020; Liao et al., 2013; Powell et al., 2020; Strickland et al., 2016a;
Young, 2017; Zhao et al., 2016) have been made to encourage the use of
mixed-effects models (i.e., mixed-models, multilevel models), which is a model-
ing approach that integrates the relative advantages of these two approaches
into a single stage analysis. However, we are not aware of any accessible
materials specifically tailored for behavioral economists for implementing the
mixed-effects modeling approach for behavioral economic demand.

As a result, the goal of the current article is to provide an easily accessible
introduction and overview to mixed-effects models in studies of operant demand. A
more in-depth discussion regarding the relative merits of the mixed-model approach in
demand, including quantitative comparisons can be found in Yu et al. (2014) and others
(Collins et al., 2014; Zhao et al., 2016). In the current article, we will first discuss the
nonlinear approach to fitting demand curve data and introduce important terminology
and concepts (see Table 1). Then, we will orient readers to a previously published
human hypothetical Alcohol Purchase Task dataset (Kaplan & Reed, 2018) consisting
of a single sample of participants under one experimental condition. Using this dataset,
we will illustrate the two common approaches to fitting demand curve data and discuss
their relative benefits and limitations. Then, we will provide an overview of nonlinear
mixed-effects modeling and apply this approach to the dataset, comparing and con-
trasting with the earlier approaches. We will then extend these analyses to a nonhuman
dataset (Koffarnus et al., 2012) with one sample of monkeys who each self-
administered a series of drugs and other reinforcers. Throughout we will conduct the
analyses in the open-source R statistical software (R Core Team, 2020). To facilitate
open-source documentation (Gilroy & Kaplan, 2019), data and code to perform these
analyses can be found at the corresponding author’s GitHub repository.2 That is, all
data and code necessary to reproduce the contents of this document, as well as
additional figures and tables, are available as an R Markdown document (i.e., a
document containing both text and code that can be rendered into other document
types) in the GitHub repository. Whereas this article will remain static, the R Mark-
down document will be updated occasionally based on advances and improvements in
the R statistical software. We encourage interested readers to consult and interact with
this R Markdown document.

In sum, we hope this article will provide readers a high-level understanding of
traditional approaches to analyzing demand curve data and limitations associated with
those techniques, while also helping readers understand how mixed-effects modeling
can enhance and help move towards best practices in demand analysis. Although we do
not expect all readers will spontaneously start conducting all their demand analyses

2 https://github.com/brentkaplan/mixed-effects-demand
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within a mixed-model methodology, we hope this article might also help readers be
able to better evaluate demand analyses. In addition, for those researchers who rely on
or work closely with statisticians in their work, this article and the associated R
Markdown document may serve as an excellent resource for their collaborators. This
article, however, is not a strict tutorial on how to implement mixed-effects models nor
on how to get started with the R statistical software.3 Those who have some familiarity
with R will benefit greatly from executing the code line-by-line in the associated R
Markdown document.

Nonlinear Fitting of Demand Curve Data

Demand data are often fitted with a nonlinear exponential decay model using ordinary
least squares regression (see Gilroy, Kaplan, Reed, et al., 2018b; Table 1), which
estimates parameter values (values that we do not know but wish to estimate with the
collected data) by minimizing the squared difference between observed consumption
values and the predicted consumption values.4 The differences between the observed
and predicted data are referred to as the residuals. Due to the increasing use of
hypothetical purchase tasks where zero values are often observed, the following
nonlinear model (Koffarnus et al., 2015) has proven useful in characterizing these data:

Qj ¼ Q0 � 10k e−αQ0C j−1ð Þ þ ε j; j ¼ 1;…; k

where Qj represents quantity of the commodity purchased/consumed at the j-th price
point and Cj is the j-th price, and these are known from the data. This model estimates
Q0, representing unconstrained purchasing when Cj = $0.00 (i.e., the intercept), and α,
representing the rate of change in elasticity across the demand curve (i.e., most
analogous to a slope parameter; see Gilroy et al. (2020) for more on the interpretation
of elasticity in operant demand). The term k represents the range of data (e.g., quantities
purchased) in logarithmic units and can be solved as a fitted parameter or can be set as a
constant by determining a priori an appropriate range. The model is structured as an
exponential decay function so the k parameter restricts the range of consumption to a
specific lower non-zero asymptote. Finally, the error (ε) term5 is assumed to be
normally distributed with mean of 0 and variance of σ2. We use this model for
illustrative purposes only in this introduction, although mixed-effects models can be
implemented on the demand model of the user’s choice (e.g., Gilroy et al., 2021; Liao

3 We recommend new users of R who are interested in analyzing demand curve data read the article by Kaplan
et al. (2019) and the associated document “Introduction to R and beezdemand” available at: https://github.
com/brentkaplan/beezdemand/tree/master/pobs. This document contains beginner steps for using R and
recommended resources for learning R’s basic functionality.
4 We will introduce below how mixed-effects models are estimated within a frequentist paradigm using
maximum-likelihood estimation. For a brief overview of maximum-likelihood estimation, see the Appendix.
5 A reader might notice that the model formulations as described in Hursh and Silberberg (2008) and
Koffarnus et al. (2015) lack an explicit error term. Error terms are useful because they probabilistically
describe the manner in which data depart from the regression line. Naturally, regression lines do not perfectly
pass through observed data, regardless of whether the error term is made explicit in the description of the
model. See Table 1 entry “error variance.”
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et al., 2013; Yu et al., 2014), including the nonlinear model from which the above
model was formulated (Hursh & Silberberg, 2008). To be clear, the purpose of this
introduction is not to compare different quantitative or conceptual models. The purpose
of this article is to provide a high-level overview of different statistical fitting tech-
niques regardless of the model chosen. Readers are directed towards Strickland et al.
(2016b), Fragale et al. (2017), and Gilroy et al. (2021) for additional information
regarding how different models perform.

Example Application: Human Hypothetical Purchase Task

Dataset

The dataset is from Kaplan and Reed (2018) in which participants completed a
hypothetical alcohol purchase task (APT; Kaplan et al., 2018). A total of 1,100
participants initially completed the task in full (4 participants were excluded for missing
data). An additional 108 participants were not included because they had fewer than
three positive consumption values. The APT consisted of 17 prices, expressed as price
per drink ($0.00, $0.25, $0.50, $1.00, $1.50, $2.00, $2.50, $3.00, $4.00, $5.00, $6.00,
$7.00, $8.00, $9.00, $10.00, $15.00, and $20.00). Participants reported how many
alcoholic drinks they would purchase and consume at each of the 17 prices.

Systematicity

Stein et al. (2015) proposed three criteria by which to suggest demand data are
systematic. These criteria include (1) trend, (2) bounce, and (3) reversals from zero.
We applied these criteria to the data for identifying unsystematic response patterns.
Overall, data were highly systematic with a total of 148 unique participants failing at
least one of the criteria. Although in typical approaches to analyzing demand these
unsystematic responses may be excluded, we will include these cases to demonstrate
the robustness of the mixed-model estimates of Q0 and α. Although we recommend
researchers screen for systematicity and report these numbers, the researcher must
determine whether to retain these participant datasets in a mixed-effects model analysis.
One approach we recommend is to analyze the data including all participants and
compare these results to the subset of data that pass the criteria to determine whether the
removal of nonsystematic data alters the interpretation of results (Young, 2017).

Common Approaches to Analyzing Demand Curve Data

In our experience with the literature, for the most part there are two common
ways to analyze demand curve data. These approaches are differentiated by
whether the study is interested in inferring what is common across individuals
(fit-to-group approach) or is interested in inferring the degrees and causes of
variation among the individuals (two-stage approach). Said another way, the
former approach is primarily concerned with generalizing about the broader
“population” (as defined in each experiment) whereas the latter approach is
primarily concerned with individual trends.
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Fit-to-Group Approach

We have observed two ways in which researchers fit a single curve to the overall group
when they are interested in making population-level inferences. In the interest of full
clarity and the recommendation that researchers specify their method of analysis in
future research, we name and distinguish these two ways. However, both of these
approaches treat variability in the data incorrectly and thus produce inaccurate mea-
sures of precision (i.e., standard errors) for estimators, which leads to misleading and/or
incorrect statistical inference.

Fitting to means The first method relies on averaging individual participant responses
within a group at each price, then fitting a single curve through the series of price-
specific group means (e.g., Hursh & Silberberg, 2008). This method, therefore, fits a
curve to n data points, where n equals the number of prices. By replacing the full data
with a series of sample means, overall variability in the data is overlooked. This
replacement leads to unrealistic standard errors that are typically much smaller than
appropriate. This method can result in astonishingly high R2 values (≥ .97), but the
“excellent fits” are an outcome of the substantially reduced variability (e.g., see Hursh
& Silberberg, 2008; Kaplan et al., 2018). Thus, this method is not appropriate for
statistical inference and is suitable for descriptive, graphical, and theoretical equation
testing (e.g., Hursh & Silberberg, 2008) purposes only.

Pooling data The second method relies on “pooling” all participant data together and
fitting a single curve through n * k data points, where n equals the number of prices and
k equals the number of participants. This method implicitly assumes all data points
(even those gathered on the same individual) are independent, which is not realistic.
This implicit assumption of independence among all data is not reasonable and leads to
incorrect standard errors for estimators.

These two methods of the fit-to-group approach typically result in nearly identical
point estimates (e.g., Q0, α) but differ in the size of the estimates’ standard errors and
the model’s residual standard error (i.e., the amount of information “left over” and not
accounted for by the model). It is important to recognize that neither of these
approaches furnish correct, realistic statistical inference, but fortunately the next two
approaches work better. For the purposes of this article, when we refer to the “fit-to-
group” approach we are referring to the “pooling”method (i.e., we fit the model to n * k
data points), which retains all individual subject data. At the time of this writing, this
pooled method is the default in GraphPad Prism (GraphPad Software, San Diego,
California USA, www.graphpad.com), a common curve-fitting program used by be-
havioral economists. In the R package beezdemand (Kaplan et al., 2019), the user must
specify the method in which they want the data aggregated (e.g., “mean” or “pooled”).

Illustration of the fit-to-group approach The current APT dataset comprises only one
group; therefore this approach will yield one Q0 and one α for the entire sample (i.e.,
population-level fixed effect; see Table 1). No individual-specific parameters can be
estimated using this approach. We can see the results of this method in Figure 2. The
left panel shows the overall fit from this model in red along with the observed
individual responses and the vertical lines at each price represent the interquartile range
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(the middle 50% of the data). The right panel displays a subset of individual partici-
pants and their responses. Note how the red lines (the prediction from the model) are
identical across individual participant plots because this method only returns
population-level estimates of Q0 and α.

Benefits and limitations of the fit-to-group approach A benefit to preprocessing data
into means prior to curve fitting is that no data need to be necessarily excluded.
Participants who report zero consumption (incompatible with the log scale of analysis
in some equations) can still be included as curves are fit to the averaged data, so long as
some participants in the sample have greater than zero consumption. As a rule,
convergence (i.e., the state when the fitting algorithm obtains a set of parameter
estimates based on some predefined threshold) is more easily achieved when the model
is fit to averaged consumption data or using the pooled method, effectively smoothing
abrupt transitions from one price to the next, which is a response pattern sometimes
observed at the individual level (e.g., see “Median α” plot in Figure 2). Notwithstand-
ing these benefits, this approach is limited (beyond the statistical issues we outlined
above) in that all participants share the same Q0 and α values and as such, participant-
level comparisons cannot be conducted. This approach does not allow for investiga-
tions into how participant-specific demand parameters may relate to other factors (e.g.,

Fig. 2 Results from the Fit-to-Group Approach. Note: Left panel: Individual points in gray and subset of
participants from right panel in open purple diamonds. Black vertical bars indicate the interquartile range
between 25% and 75%. The red line shows the best fit line from the fit-to-group approach. Right panel: A
subset of participants and their responses. The red line in each pane is identical to the fit-to-group approach
demonstrating each participant has the identical predicted values. Visual inspection reveals that the best fit line
is inadequate to characterize the data for a number of participant datasets
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response to treatment, demographic variables). In addition, any inferences made at the
group level should not be assumed to hold true at the individual level, as this is known
as the “ecological fallacy” (Robinson, 1950).

Two-Stage Approach

The second commonly used approach is to fit a regression model to each participant.
Unlike the fit-to-group approach, the two-stage approach does not try and fit the
average response pattern over all participants. Rather, subject-specific Q0 and α values
are estimated in the first stage. The second stage is to make inferences about variation

in the fitted bα and cQ0 values using other statistical tests such as t-tests, analysis of
variance, or even mixed-effects models.

Illustration of the two-stage approach For this dataset (992 participants), a total of 935

demand curves were able to be fit, each resulting in a cQ0 and an bα value. Unique to the
two-stage approach is that on occasion (depending on the task and participant sample)
certain participant’s data are especially difficult or unable to be fit using operant

Fig. 3 Results from the First Stage Model Fitting from the Two-Stage Approach. Note: Left panel: Individual
best fit lines in gray and subset of participants' best fit lines from right panel in maroon dashed line. Note here
because of this approach, no overall group-level best fit curve is generated. Right panel: A subset of
participants and their responses. The maroon dashed lines show best fit lines for each participant. As illustrated
in the bottom three panes, one of the limitations of the two-stage approach is that irregular datasets often times
do not yield usable demand metrics. In these cases, no model predictions are obtained and demand parameters
from these models cannot be used in subsequent analyses
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demand models. The failure to converge may be due to relatively few positive
consumption values, that these data do not follow the “typical” downward sloping
function, or that starting values are not appropriately identified. As a result, a total of 57
participants’ data were excluded from this analysis. The left panel of Figure 3 depicts
the individual fits to a subset of participants’ data. Contrast Figure 3 with Figure 2.
Although this two-stage approach will typically result in predicted lines fitting closest
to the data (compared to other approaches), such predictions may not be “generaliz-
able” to either other participants (or individuals in a population) or other experimental
conditions. That is, relatively more parameter fits are being conducted than is neces-
sary. This lack of generalizability is partly due to the model being optimized to a small
amount of data relative to what else is “known” in the experiment (e.g., Do other
participants respond in similar ways to an experimental manipulation? Do participants
tend to respond in a manner more like their other responses regardless of other
experimental manipulations?).

Benefits and limitations of the two-stage approach A benefit of the two-stage ap-
proach is that demand parameters at the individual participant level can be obtained and
used for downstream (i.e., stage 2) comparisons. Several limitations are associated with
this approach. One limitation is that demand parameters may be either difficult to
estimate or not estimable for some participants with sparse data (e.g., only one or two
positive consumption values) or with extreme “step” response patterns with abrupt
decreases in consumption from one price to the next. These exclusions limit the scope
of inference to those individuals at least somewhat described by the model. That is, if
derived parameter values (Q0 and α) from response patterns that do not follow the
“typical” downward sloping function are not able to be estimated using traditional
fitting algorithms, then downstream comparisons will be limited to a subset of the
overall sample (this limit of scope is similar to when data that only meet systematic
inclusion criteria [Stein et al., 2015] are included in an analysis). Another limitation is
that individual Q0 and α are treated as perfectly accurate estimates with no error when
these parameters are used in subsequent statistical tests. Of course, the first stage model
fits are imperfect, yet none of this uncertainty carries forward to the second stage of
analysis. Any second stage analysis will assume the participant-specific demand
parameters provided are known with complete certainty and this will provide inaccurate
estimates of associated standard errors. This approach also disregards intrasubject
correlations across experimental conditions, which can also affect the estimates in
subsequent analyses unless special care is taken to model these correlations.
Intrasubject correlation refers to the association shared between data points collected
within the same subject and is a commonly observed phenomenon in repeated mea-
sures studies. This “two-stage” approach—where demand parameters are obtained in
the first step and compared in a separate, second step—may result in biased conclusions
and generalizability may be compromised. This approach also lacks philosophical
appeal because there is no overarching model that relates individual subject parameter
estimates to the population average that are of interest to researchers.

Each of these two approaches discussed have their relative benefits and drawbacks.
An ideal method of incorporating the benefits of each approach would be conducted in
a single stage, use all available data, incorporate covariates and experimental factors
(which are usually only addressed at the second stage), and result in “population” level
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estimates (see Table 1) while also providing individual level predictions and accounting
for intrasubject correlation. The mixed-effects modeling approach we describe next has
precisely these characteristics.

Mixed-Effects Models

Several key concepts related to the mixed-effects modeling approach need to be
discussed. Recall that in the fit-to-group approach we referred to the resulting group-
level estimates “fixed effects” because they are considered common to all individuals
within a group and thus invariant within the observational unit (i.e., participant). At the
highest degrees of generality, fixed effects may describe the underlying population
structure and do not vary from one individual to the next.

A “random effect” is a model term that varies from one individual or subgroup to the
next. To model this variation, random effects are governed by probability distributions.
These random effects can be thought of as deviations around population level fixed
effects. By specifying random effects on model parameters (Q0, α), we allow a given
participant to deviate relatively higher or lower around the population average fixed
effects. On average, these random-effect deviations will equal 0, which is just a
different way of saying that on average, the individual estimates will equal the
population level estimates.

The mixed-model approach introduces the ideas of shrinkage and partial pooling,
which come into play when the dataset contains values unusually far from the average.
For example, suppose a participant in our dataset shows much higher consumption
compared to many other participants in the group. In the two-stage approach, the
estimated parameters for this participant will be far from the average. Although this
may certainly be a valid dataset and response pattern, unusually high (or low) values
inflate estimates of individual error variance. The inflated error introduces greater
uncertainty the individual’s parameter estimates, which in turn inflates uncertainty in
downstream analyses of individual variation in those parameters. In this way, error
propagates through each step of the analysis, resulting in confidence intervals of second
stage estimates that do not accurately reflect error variance from the first stage. It is
important to note that if no additional steps are taken to integrate error over each step,
then estimates of the confidence intervals and other inferential statistics are likely to be
incorrect. Rather, in a mixed-model approach, information from the entire group is
leveraged to shrink the more imprecise estimates back towards the group average.
Because this benefit relies on anomalous estimates having a certain degree of impre-
cision, the estimates may not differ drastically from the two-stage approach in suffi-
ciently large samples. In the mixed-model approach, the fixed effects will more closely
reflect the underlying response patterns of the individuals (e.g., these fixed-effect
estimates will be influenced less by unusually high or low values) as will the random
effects (estimates associated with each participant) be more reflective of the pattern of
responding of the group as a whole (see Chapter 13 of McElreath, 2018 for additional
examples).

The most extreme case of parameter imprecision occurs when, due to anomalies in
the data, one or more parameters do not have a solution (i.e., the likelihood function is
flat and the parameter sampling error is infinity). In our example, the center-bottom
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pane of Figure 3 shows an individual that altogether lacks the variation in responses
needed to estimate both k and α. In that case, the model will not converge to a solution,
and the resulting parameter estimates may take extreme values that will exert relatively
greater influence on parameter estimates and the associated standard errors in the
second step of the analysis. The principle of shrinkage applies to these scenarios most
of all by forcing nonestimable parameters to take the values of their group means and
thus have no influence on subsequent inferences. This effect could be regarded as an
automatic mechanism of imputation (i.e., assigning or determining a value based on
inference from other data with common characteristics) given insufficiently informative
data on some individuals.

On the other hand, standard errors resulting from the fit-to-group approach may be
artificially small due to inclusion of all participant data while also treating all data as
independent. However, repeated measures on the same subject are typically correlated,
thus containing some of the same information. In the presence of a positive correlation,
standard errors should be larger than if the data are independent because there is less
unique information in the data for a given sample size. This is one reason why standard
errors from the fit-to-group approach are unlikely to accurately reflect the true precision
in the estimate. In general, small standard errors suggest a high degree of precision in
the estimates (even if the estimates are not completely accurate) and this size will affect
inferences from statistical tests (e.g., considering if a difference is statistically signifi-
cant or not). Although the size of the standard errors associated with the fit-to-group
approach are unlikely to be accurate, simulation studies have shown standard errors
resulting from mixed-effects modeling tend to be more accurate (e.g., Ho et al., 2016;
Yu et al., 2014) by including all data and recognizing the correlation present within
subjects.

Illustration of Mixed-Effects Models

Adapting the behavioral economic demand model (Eq. 1) for use in the mixed-effects
model framework yields:

Qij ¼ Q0i � 10k e−αiQ0i Cij−1ð Þ þ εij; i ¼ 1;…; n; j ¼ 1;…; c

where here Qij represents quantity of the commodity purchased/consumed by the i-th
participant at the j-th price point and Cij is the j-th price associated with the i-th
participant (again these are known from the data). Q0i and αi represent intensity and
rate of change in elasticity associated with the i-th participant. Finally, the error (εij)
term is error associated with each individual. This and any other mixed-effects model
can be expanded into matrix notation, which can be found in the Appendix.

In the statistical program R, there are several functions and packages for fitting
nonlinear mixed-effects models. For the purposes of this article, we use nlme from the
nlme package (Pinheiro et al., 2020; see also, e.g., nlmer from the lme4 package). As
mentioned above, the code necessary to reproduce all figures and analyses is available
in the corresponding author’s GitHub.6

6 See “Code Availability” in the statement of “Compliance with Ethical Standards.”
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We can see the results of the mixed-effects models in Fig. 4. Several things
are important to note. First, notice this model provides group-level fixed-effects
predictions (left panel; red prediction line) and participant-level predictions
(blue and gray lines) obtained from adding the fixed and random effects
together because, again, the random effects are deviations around the group-
level fixed effects associated with individual subject data. In the left panel of
Figure 4 we see the group-level fixed-effect predictions approximate the aver-
age of all the lines and look similar to the left panel of Fig. 2. In the right
panel of Fig. 4 we see the participant level predictions match closely to the
individual points and look similar to the right panel of Fig. 3. Figure S1 in the
supplemental materials shows how these two approaches differ by overlying
these lines on the raw consumption data.

Figure 5 displays the estimates and the standard errors associated with the
three approaches for log(Q0) and log(α). This figure nicely illustrates the
relative advantage of the mixed-effects modeling approach with respect to the
size and accuracy of the standard errors, as discussed above. On the left side of
the graph, the fit-to-group approach (circles) shows substantially smaller stan-
dard errors, whereas the middle points (two-stage approach; squares) show
larger standard errors. Notice the size of the standard errors associated with
the mixed-effects modeling approach (diamonds) is more similar to the two-

Fig. 4 Results from the Mixed-Effects Model Regression. Note: Left panel: Individual predicted lines in gray,
subset of participants' predicted lines from right panel in blue dashed lines, and the overall group's best fit line
in solid red. Note here the mixed-effects model provides a population best fit line (i.e., fixed effects) and
individual predictions (i.e., random effects), both which leverage data from all participants. Right panel: A
subset of participants and their reported responses. The blue dashed lines show predicted values from
participants' random effects, which deviate from the overall group’s best fit line (solid red line)
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stage approach, suggesting the fit-to-group approach overestimated the precision
of the estimates. The size and accuracy of standard errors are important when
conducting statistical tests to determine the extent to which certain values of Q0

and α may be statistically different across two or more experimental groups or
conditions. Too narrow of standard errors are likely to inflate Type I error
(erroneously rejecting the null hypothesis and concluding an effect or difference
exists when it does not), whereas too wide of standard errors are likely to
inflate Type II error (failing to reject the null hypothesis and concluding the
difference or effect does not exist when it does). Accuracy and proper size of
standard errors is critically important for comparisons such as whether a certain
drug maintains a higher abuse liability than another; an example we will
illustrate using a nonhuman dataset below.

Up to this point, we have demonstrated how the mixed-effects model can be applied
to a single group and how estimates differ from the fit-to-group and two-stage
approaches. We now discuss how these mixed-effects models can be extended to
different types of experimental designs, including between subject and within-subject
designs.

Fig. 5 Point Estimates and Standard Errors for log(Q0) (Top Panel) and log(α) (Bottom Panel) from Each of
the Three Fitting Methods. Note: Notice how for this dataset, the fit-to-group approach (circles) tend to
underestimate standard errors whereas the two-stage approach (squares) standard errors are larger. The mixed-
effects modeling approach is shown in diamonds
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Extending the Mixed-Effects Model

Between-Subject Designs

Extending the mixed-effects models described here to between-subject designs com-
paring two or more groups at a single timepoint is straightforward and relatively simple.
For these designs, an additional fixed effect representing the between-subject experi-
mental manipulation is added.7 The random effects structure remains the same. Addi-
tional covariates or variables of interest can be added in much the same way that a
fixed-effect term representing a between-subject experimental manipulation can be
added.

Crossed and Nested Designs

Special care must be taken to understand the experimental design and data
structure to properly specify how the random effects should be estimated in
designs incorporating repeated measurements. Two types of these designs are
crossed and nested design. For example, a nested design might measure demand
over several days among two groups of participants with one group receiving
active medication and the other group receiving placebo. These demand mea-
surements are nested within participant and participant is nested within drug
group (active vs. placebo). However, drug group is a between-groups factor
because a participant can be in only one group or the other. These types of
models are most easily implemented in various mixed-effects modeling pack-
ages in the R Statistical Software.

Crossed designs are those in which there are no inherent levels or nesting.
For example, a crossed design might be measuring demand over consecutive
days among participants who experience two different doses of a drug. Whereas
demand measurements are nested within participant (similar to above), all
participants experience both doses of the drug. Therefore, there are sources of
variation at both the participant level and at the experimental manipulation level
but without exclusive nesting. It is important to note that “. . . nested effects
are an attribute of the data, not the model” (Errickson, n.d.). There may be
experiments where no specific manipulation is implemented. In these cases, a
mixed-effects model can still be fit and this model formulation will be rela-
tively simple compared to more complex experimental designs. Here we will
illustrate an example of a nonhuman self-administration dataset with no inherent
levels of nesting between monkeys and drugs. We will demonstrate how the
mixed-effects model can estimate multiple fixed effects of interest (i.e., differ-
ent reinforcers) and how we can use these models to directly compare differ-
ences in demand parameters using null-hypothesis testing.

7 In the R statistical software, adding a fixed effect term is as easy as adding “+ fixed_term” in the fixed
argument of nlme. For additional insight into model formulation see Pinheiro and Bates (2000), as well as the
comments in the R Markdown document at https://github.com/brentkaplan/mixed-effects-demand.
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Example Application: Nonhuman Self-Administration

The following example illustrates application of the mixed-effects model to
nonhuman animal data published in Koffarnus et al. (2012). The monkeys
responded on increasing fixed-ratio schedules (i.e., “prices”) to earn infusions
of the various reinforcers. The drugs used included cocaine, ethanol, ketamine,
methohexital, and remifentanil. Two additional conditions were tested including
food (sucrose pellets) and saline infusions.

As we showed earlier in the article, we will first demonstrate modeling by
fitting a single curve to all the data within each reinforcer (fit-to-group ap-
proach), as well as fitting to each monkey for each reinforcer (two-stage
approach). Finally, we show how the mixed-effects model provides us with
both predictions at the reinforcer level, as well as individual monkey level for
each reinforcer, and how we can use estimated marginal means (i.e., least-
square means) to compare reinforcing efficacy (α) of the reinforcers.

Fig. 6 Point Estimates and Standard Errors for log(Q0) (Top Panel) and log(α) (Bottom Panel) from Each of
the Three Fitting Methods for Each Reinforcer. Note: Results of the mixed-effects modeling approach
(diamonds) are consistent with and provide more accurate standard errors compared to the fit-to-group
(circles) and two-stage (squares) approaches
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Fit-to-Group and Two-Stage Approaches

Our first approach fits a single demand curve to each of the seven reinforcers. This was
the analysis method used in the original article (Koffarnus et al., 2012). The left panel
of Figure S2 (Supplemental Materials) displays the fitted curve to each of the rein-
forcers, the 25% and 75% interquartile range (vertical black lines), and the individual
data. The right panel shows these group-level fits within each monkey. Notice here how
for some monkeys, the predicted lines are far from the points (e.g., Saline for LE, TI).
This discrepancy between the population-level predictions and some proportion of the
individual data is similar to what was observed with the APT dataset. Figure 6 displays
the estimates and standard errors from the model (circles) and results from the analyses
show Saline resulted in the highest log(α) and Cocaine and Remifentanil with the
lowest. Other reinforcers were intermediary.

Fig. 7 Results from the Monkey Mixed-Effects Model Regression. Note: Left panel: Dashed colored lines
indicate the fixed effect predictions from the mixed model, whereas the solid, transparent colored lines show
individual predicted lines as extracted from the random effects. Note here the mixed-effects model provides
best fit lines for each reinforcer as well as individual predictions, both which leverage data from all participants
and all conditions. Right panel: Individual monkeys and their consumption. The solid, transparent colored
lines show predicted values from participants' random effects, which deviate from the overall group means
(dashed colored lines)
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As in the human example, we show the first stage of fitting the model using the two-
stage approach. We encounter the same limitations as in the human example; namely,
we are unable to derive population-level (i.e., reinforcer-level) estimates of Q0 or α and
we are unable to obtain individual-level fits for BU Ethanol. The left panel of Figure S3
shows the individual monkey fits within each reinforcer and the right panel displays
these fits within each monkey and for each reinforcer. As is expected, these lines fit the
individual data well. Figure 6 displays the averaged estimates and standard errors from
this two-stage approach (squares). The results of this approach are consistent with those
of the fit-to-group approach—Saline and Cocaine/Remifentanil showing the highest
and lowest log(α), respectively.

Mixed-Effects Model

Figure 7 displays the results of the mixed-effects modeling approach. Both panels show
prediction lines from the fixed-effect estimates for each of the drugs (thick lines) and
the subject-level predictions from the random effects (light lines). As shown and
demonstrated in the human example, the mixed-effects model provides information
(i.e., predictions) at the population level (in this case the reinforcer level) as well as at
the individual level. In this mixed-effects model, we fit each reinforcer as a nominal
(categorical) fixed effect. In models where categorical fixed effects are used, we can use
estimated marginal means to compare the values of log(α) for each nominal category.
Estimated marginal means provide the mean response values for a model’s factors
adjusting for any covariates (Lenth, 2019). In the current models, the estimated
marginal means are equivalent to the model effects given there are no covariates for
which to account. The values are shown in Figure 6 (diamonds). The results of the
mixed-effects model are consistent with the findings from the traditional approaches,
suggesting Saline and Cocaine/Remifentanil maintained the highest (lowest reinforcing
value) and lowest (highest reinforcing value) log(α), respectively.

Comparing Coefficient Values

One additional benefit of fitting these nonlinear mixed-effects demand models is the
relative ease in which statistical comparisons can be made. Using the fit-to-group
approach, traditional methods of statistical tests are largely limited to those such as
the extra sum-of-squares F-test and comparisons in Akaike Information Criteria (AIC,
AICc). Using the two-stage approach, comparisons techniques are more numerous and
range in complexity (e.g., t-tests, analysis of variance, mixed-effects models). The
relative benefits and drawbacks of these comparison methods will not be contrasted
here; rather, we note that post-hoc pairwise comparisons can be determined directly
from the model and with no need to extract parameter values and use in subsequent
tests, as is required in the two-stage approach. For example, we used a powerful and
flexible R package (emmeans; Lenth, 2019) to conduct pairwise comparisons (t-tests)
of log(α) from the mixed-effects model and adjusted p-values using false discovery rate
(see Table S1). The results suggest largely conform to those displayed in the bottom
panel of Figure 6. Saline’s log(α) was statistically significantly higher (lower valuation)
than all other reinforcers tested. Cocaine and Remifentanil’s log(α)’s were significantly
lower (higher valuation) compared to all other reinforcers except Food and each other.
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Other Considerations

Beyond the introduction and basic concepts laid out here in the re-analysis of a human
APT dataset and nonhuman self-administration dataset, there are additional consider-
ations for fitting mixed-effects models to behavioral economic operant demand data.
One consideration is the determination of convergence criteria. Convergence criteria
can be relatively lenient (i.e., finding “good enough” estimates and looking no further
after the criteria is met) or they can be relatively strict. With data that follow the typical
exponential decay function of demand (i.e., systematic), convergence can more easily
be obtained under strict criteria. With data that are relatively more “unsystematic,” strict
criteria may not result in convergence and these criteria may need to be relaxed (e.g.,
increasing tolerance). Another reason convergence may not be achieved is because
starting values may be too far away from the optimal solution. This problem is also
present in traditional approaches to fitting demand curve data (e.g., fit-to-group, two-
stage) and nonlinear modeling in general. If convergence issues are encountered, we
suggest relaxing the convergence criteria until a solution is determined. Then the
estimates from this model may be used as starting values for another model where
convergence criteria are tightened once more. Given the complexity of demand curve
data and some quantitative models to describe these data, some amount of relaxation of
convergence criteria may be acceptable (in our anecdotal experience, we have found
tolerance < 0.01 may be an acceptable limit). However, when encountering datasets or
models that do show difficulty converging, the researcher should ensure they are
specifying the model correctly and may consider reporting difficulty fitting the model.

Finally, mixed-effects models may be solved using Bayesian methods and Markov
Chain Monte Carlo (MCMC) as opposed to maximum likelihood estimation. Methods
such as these have been successfully applied to behavioral economic demand data (Ho
et al., 2016). MCMC has the added benefits of producing empirical posterior (or under
frequentist assumptions, sampling) distributions for all parameters in the model and
does not suffer from certain convergence problems with maximum likelihood estima-
tion in small samples. Several packages in the R statistical software can solve mixed-
effects models using Bayesian methods (e.g., brms, rstanarm). We recommend one
package in particular—brms—because this package provides even greater flexibility
than nlme or lme4 and the syntax (e.g., writing the model) is highly similar to that of
lme4.

Conclusion

Mixed-effects models are becoming a more popular means by which to analyze
complex behavioral economic demand data. Although this modeling technique is more
complicated than traditional approaches to analysis (i.e., fit-to-group, two-stage), our
goal here is to make the motivation, interpretation, and execution of the mixed-effects
modeling technique more accessible for the analysis of demand data. In this article we
have used two datasets (i.e., a hypothetical purchase task, nonhuman animal self-
administration) to (1) illustrate the traditional approaches to demand modeling, (2)
discuss the relative benefits and limitations of these approaches, (3) provide an
overview of the mixed-effects framework, (4) illustrate the results of this framework,
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and (5) describe how results from the mixed-effects modeling technique correspond
with the traditional methods. In order to facilitate execution of these techniques, we
have made a fully reproducible document available at the corresponding author’s
GitHub page as a repository. There, this code can be inspected, executed, and adapted
for researchers’ own endeavors.

Appendix

A Word about Maximum-Likelihood Estimation

Mixed-effects models are typically solved via maximum-likelihood estimation (see
Table 1; note these models can also be solved via other techniques such as Markov
Chain Monte Carlo but this is beyond the scope of the current article). A brief overview
of this approach follows. First, a likelihood function (which relates to the observed data
to the parameters the experimenter is interested in) is evaluated for an initial candidate
set of parameters during a single iteration of the model evaluation. The algorithm
assesses the shape of the likelihood surface at these parameter values, then picks a new
set of parameter values to achieve a higher likelihood in the next iteration. The model
continues to iteratively select both individual subject (i.e., random effect) and group
(i.e., fixed effect) parameter values and evaluate the likelihood in this manner until the
algorithm reaches the maximum of the likelihood function. This final set of random-
and fixed-effect values is the set that make the observed data “most likely” to have
occurred, and thus serve as the parameter estimates based on the observed data.
Restricted maximum likelihood is frequently used for mixed-effects models because
it typically produces variance estimates with less bias than traditional maximum
likelihood (Liao & Lipsitz, 2002; Meza et al., 2007). However, regular maximum
likelihood estimation is used for comparing fixed effects across different mixed-effects
models. For more in-depth discussion, see Bates et al. (2015). The primary difference,
therefore, between maximum likelihood estimation and nonlinear least squares regres-
sion is that the former determines the coefficients that maximize the probability of the
observed data, whereas the latter minimizes the error (deviations between the predicted
and observed values).

Expanding into Matrix Notation

We expand this in matrix notation to describe how the individual estimates Q0i and αi

are the sum of the fixed effects β1 and β2 and random effects b1i and b2i. The random
effects bi are distributed based on a multivariate normal (MN) distribution with mean 0
and variance equal to ψ. Because the bi random effects index the individual, we assume
the sampling distribution of these two effects may be correlated to some extent with
each other, which is shown in the expansion of ψ.

Q0i

αi

� �
¼ β1

β2

� �
þ b1i

b2i

� �
¼ βþ bi;bi∼MN 0;ψð Þ; ϵij∼N 0;σ2 f p j

� �� �
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and

ψ ¼ σ2
1 σ12

σ12 σ2
2

� �

In essence, the fixed effects β1 and β2 are analogous to the parameters we obtain from
the fit-to-group approach and the random effects b1i and b2i are analogous to those we
obtain from the two-stage approach. Here the difference is we leverage all the available
data; in other words, how does the sample as a whole respond (i.e., fixed effects) and
how do individuals respond relative to the sample (i.e., random effects).
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