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Research applying the behavioral economic demand framework is increasingly conducted across disci-
plines. With respect to psychopharmacology and substance abuse, real and hypothetical purchase tasks
are regularly used to evaluate the demand for various substances and reinforcers, such as alcohol. At
present, a variety of methods has been introduced to solve for the point of unit elasticity, or Pmax, in the
exponential model of demand; however, these methods vary in their potential for error. Current methods
for determining Pmax are presented here and a novel exact solution for Pmax in the exponential model of
demand is introduced. This solution provides an exact calculation of Pmax using the omega function, as
algebraic solutions are not possible. This novel approach is introduced, discussed, and systematically
compared to earlier methods for determining Pmax using computer simulations and reanalyses of
published study data. Systematic comparison indicated that this new approach, an exact analytic solution
for Pmax, provides results that are identical to computationally intensive Pmax methods that directly
evaluate the slope of the demand function. The exact analytic Pmax approach is reviewed, its calculations
explained, and an easy-to-use web tool is provided to assist researchers in easily performing this
calculation of Pmax. Implications for reducing potential sources of error are reviewed and future
directions are also discussed.

Public Health Significance
This study proposes and explains an improved method for calculating unit elasticity of demand.
While approximate methods exist, even small sources of error due to estimation have negative
implications for the development of public policy. Using this new method, an exact calculation of
unit elasticity can now be obtained much more easily and reliably.
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Classical economic theory employs demand analyses to under-
stand market influence on consumers’ willingness to pay for

particular goods and services. Central to demand theory is the
notion of demand elasticity, which is defined as the “ratio of the
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relative change in a dependent variable to the relative change in an
independent variable” (Watson & Holman, 1977, p. 34). Behav-
ioral economists have translated this concept to the consideration
of reinforcement operations on operant responding. Operant be-
havioral economics, namely the methods specific to studying op-
erant demand, provides a framework for quantifying response-
reinforcer relationships under some type of constraint (number of
responses required per unit of reinforcer, delay to reinforcement,
effort associated with responding for one unit of reinforcement,
etc., e.g., Hursh, 1980, 1984; Kagel & Winkler, 1972; Rachlin,
Green, Kagel, & Battalio, 1976). Demand elasticity in operant
psychology may thereby be used to provide a quantification of a
reinforcer’s hedonic or motivational value.

The relationship between the consumption of reinforcers (e.g.,
alcohol, nicotine) and the responding necessary to produce them is
complex, though it has been effectively modeled in several ways
(Hursh, Raslear, Bauman, & Black, 1989; Hursh & Silberberg,
2008; Koffarnus, Franck, Stein, & Bickel, 2015). Regardless of the
specific model used to quantify the demand for reinforcers, the
operant demand approach (hereafter considered synonymous with
the simple term demand) has been particularly useful in the context
of various willingness-to-pay tasks—particularly purchase tasks
(Roma, Reed, DiGennaro Reed, & Hursh, 2017). Using these
tasks, the demand for substances or goods such as alcohol (Kaplan,
Foster, et al., 2018), nicotine (MacKillop & Tidey, 2011; Stein,
Koffarnus, Stepanov, Hatsukami, & Bickel, 2018), prescription drugs
(Pickover, Messina, Correia, Garza, & Murphy, 2016), or marijuana
(Aston, Metrik, & MacKillop, 2015; Collins, Vincent, Yu, Liu, &
Epstein, 2014) is assessed at various financial costs and inferences are
drawn based on the degree to which participants will defend their
levels of consumption as prices increase (Hursh, 1980, 1984).

While the operant demand framework has been particularly
useful in characterizing abuse liability for drugs and other addic-
tive substances (e.g., nicotine, alcohol), this methodology has also
been extended to other areas of choice and decision-making. For
example, these methods have also been used to evaluate food
intake and dietary choices (Epstein et al., 2018; Epstein & Saelens,
2000; Epstein, Smith, Vara, & Rodefer, 1991; Saelens & Epstein,
1996), use of indoor tanning services (Reed, Kaplan, Becirevic,
Roma, & Hursh, 2016), and purchasing groceries (Foxall, Olivera-
Castro, Schrezenmaier, & James, 2007; Foxall, Wells, Chang, &
Oliveira-Castro, 2010). Further, other researchers have explored
areas such as workforce attrition and incentives (Henley, DiGenn-
aro Reed, Kaplan, & Reed, 2016; Henley, DiGennaro Reed, Reed,
& Kaplan, 2016), “green” consumerism (Kaplan, Gelino, & Reed,
2018), and informing interventions for individuals with disabilities
(Gilroy, Kaplan, & Leader, 2018; Reed, Kaplan, & Becirevic,
2015; Reed et al., 2009) using this approach. On a macrolevel, this
framework has been used at the population level, providing a
means of developing and evaluating empirically supported public
policy (Guthrie, 2017; Hursh, 1991; Hursh & Roma, 2013; MacK-
illop et al., 2012; Reed et al., 2016).

Demand Curve Analyses

Current methods for quantifying the strength, or potency, of a
reinforcer (e.g., alcohol, nicotine) represent this quality as a curve,
whereby the overall consumption of a reinforcer (Q) slopes down-
ward as a nonlinear function of increasing cost (P; Hursh, 1980,

1984). Prior to representing reinforcer strength in this way, earlier
methods compared the potency of reinforcers based on measures of
relative efficacy (Johnson & Bickel, 2006). For example, the efficacy
of a reinforcer such as nicotine (e.g., cigarettes) might be compared to
some alternative reinforcer (e.g., money) based on some aspect of
responding under constraint, which might include peak levels of
responding (i.e., highest levels of expenditure), reinforcer breakpoint
(i.e., highest costs endured), or some other pattern of responding, such
as preference (Katz, 1990). These earlier methods, which compare
reinforcers based on one aspect of the response–reinforcer relation-
ship, have since been superseded by demand curves, which represent
reinforcer efficacy as a multidimensional construct with metrics aris-
ing from a fitted curve (Bickel & Madden, 1999; Bickel, Marsch, &
Carroll, 2000; Johnson & Bickel, 2006).

Representing reinforcer strength as a curve offers several ad-
vantages over measures of relative reinforcer efficacy (Johnson &
Bickel, 2006; Reed, Niileksela, & Kaplan, 2013). For example,
modeling changes in consumption as a function of changes in price
as a curvilinear function serves to integrate various aspects of the
response-reinforcer relationship in a single, unified approach. Fur-
ther, modeling the demand in this way reveals additional qualities
of reinforcers. Among these, the demand curve permits an analysis
of the elasticity of demand for a reinforcer (Hursh, 2014; Hursh &
Silberberg, 2008; Lea, 1978; Lea & Roper, 1977). Briefly, the
demand for reinforcers is differentially influenced by constraints
such as price and time. Changes in consumption as a function of
changes in the cost–benefit ratio are referred to as the elasticity of
demand and index the degree to which consumption is sensitive to
these increasing costs. That is, there are regions of the demand
curve where consumption is relatively unaffected by increases in
costs and others where consumption is substantially affected by
increases in cost (see Figure 1). These regions are termed the
inelastic and elastic ranges of the demand curve, respectively, and
prices associated with each range exert differential effects on
consumption. Demarcating these two regions of the demand curve
is the point of unit elasticity or Pmax, a location upon the demand
curve whereby one log-unit increase in price is accompanied by
one log-unit decrease in levels of predicted consumption (i.e., �1
unit consumption/1 unit price � �1 unit change). This ratio (i.e.,
slope) is near zero at low prices and grows increasingly negative as
larger changes in consumption take place. An example of this
slope and the calculations involved are illustrated in the right panel
of Figure 1. In this example, unit prices less than Pmax are asso-
ciated with smaller changes in levels of consumption when prices
increase, that is, �1 � f =(x) � 0, and costs greater than Pmax are
associated with larger changes in consumption when prices in-
crease, that is, f =(x) � �1.1

Approximations of Unit Elasticity

The exponential (Hursh & Silberberg, 2008) and exponentiated
(Koffarnus et al., 2015) models are frequently used in studies of

1 We make note that f =(x), or f-prime, here refers to the first order
derivative of the exponential demand function and that calculations based
on the first order derivative have been considered “exact” methods for
determining Pmax.
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operant demand.2 In both models, the shared methods for deter-
mining Pmax have varied in several ways. Before discussing these
ways, we make note that calculations of model slope are ultimately
the same for both the exponential and exponentiated models. This
is because elasticity is assessed in log–log space and scaling the
exponentiated model of demand into log–log space ultimately
provides the same projection. As such, we reference the exponen-
tial model directly in this work because this model already occu-
pies the necessary space for calculating model slope (i.e., log–log)
by default. However, we reiterate that regardless of whether the
exponential or exponentiated model is used, Pmax calculations
would be performed in the same manner. The exponential model
takes the following form:

log10Q � log10Q0 � k(e���Q0�x � 1)

As first noted by the exponential model authors (Hursh & Roma,
2013; Hursh & Silberberg, 2008), an arithmetic solution for model
slope (i.e., Pmax) is not available. The terms of this model’s first
order derivative prohibit an arithmetical solution for the price (i.e.,
x) at a slope of �1 because the term for price (i.e., x) appears twice
in the derivative—both inside and outside of the exponent. As a
workaround for this issue, alternative approaches for calculating
(or approximating) Pmax have been introduced. First, Pmax can be
approximated empirically by “observing” a point of maximum
responding (i.e., the empirical Omax). In this approach, the empir-
ical Omax is calculated by multiplying the levels of recorded
consumption by the corresponding prices. From the resulting val-
ues, the highest is termed the empirical Omax and this measure can
be used to approximate an “observed” Pmax for an empirical
demand curve, because Omax and Pmax are related (Greenwald &
Hursh, 2006). This approach is driven by the available data alone,
separate from models of demand, and provides an indicator of unit
elasticity by identifying the price associated with the highest levels
of responding. Second, there are mathematical formulas that result
in an approximation of Pmax using the fitted model parameters
(Hursh, 2014; Hursh & Roma, 2013). The approximate Pmax

formulas produce values that are highly correlated with the “true”
or exact Pmax, which would be found if directly evaluating model

slope using specialized programming. Lastly, an exact Pmax can be
determined using specialized software wherein a program system-
atically searches for the price where the first order derivative is
equal to �1 (Hursh & Roma, 2013).3 In this approach, referred to
here as derivative Pmax, an algorithm is used to iteratively search
for Pmax using a fitted demand function. While several methods are
available for determining Pmax, there are inevitable variations in
the values resulting from each of these methods and this variability
is inherently due to difficulties solving for an exact model slope
of �1. Any variations in Pmax values present challenges for
comparing values across studies and for the accuracy of making
population-level recommendations (e.g., formulating public policy
related to substance abuse).

An Exact Solution for Unit Elasticity

While there is no arithmetic solution for Pmax, there are alter-
natives where a slope of �1 can be determined without the need
for specialized computer programs. For example, the Lambert W
(i.e., omega) function can be used with the first order derivative of
the exponential model of demand to solve for Pmax. Briefly, the W
function allows for the solving of x when a function takes the form
of y � xex. This is desirable in the case of the first order derivative
of the exponential model of demand because this applies to the x
terms that exist inside and outside of the exponent. Using the W
function, this simple example then takes the form of x � W(y). As
such, the same logic may be applied to the first order derivative for
Pmax.

The purpose of this study was to evaluate the accuracy, reliabil-
ity, and utility of an exact solution for Pmax in the exponential
model of demand—hereafter referred to as analytic Pmax. To
evaluate this novel approach, computer simulations and published

2 While the exponential and exponentiated models are presented sepa-
rately, it warrants noting that the two models share a common basis but
differ in scale. That is, the exponential model exists in log scale and the
exponentiated model is in linear scale.

3 We note that derivative-based approaches for determining Pmax have
also been referred to as the exact Pmax.

Figure 1. Demand curve and Pmax in log–log space. These figures illustrate the calculation of unit elasticity
(Pmax) in log–log space. The left panel illustrates the form of a conventional demand curve and the right panel
illustrates the specific calculations involved. As described in the right panel, a slope of �1 on the demand curve
indicates that 1 log-unit increase in price equates to a �1 log-unit decrease in levels of consumption.
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data were used to facilitate comparisons of the various methods for
calculating Pmax. Specifically, this study asked the following ques-
tions: (a) To what degree do the observed, approximate, derivative,
and analytic methods of calculating Pmax relate to one another? (b)
To what degree does the analytic method of calculating Pmax

provide results consistent with the derivative, or exact, Pmax from
which it was derived? (c) To what degree do results from the Pmax

methods correlate with other behavioral indicators of abuse liabil-
ity in published study data?

Method

Simulated Data Series

A total of 1,000 simulated consumption series were generated
from the results of an earlier peer-reviewed study on decision-
making (Kaplan & Reed, 2018) and all simulations were con-
ducted using the R statistical program (R Core Team, 2017).
Participants in Kaplan and Reed (2018) were recruited using the
Amazon Mechanical Turk platform to complete a hypothetical
alcohol purchase task (APT; Kaplan, Foster, et al., 2018). Al-
though the purpose of the source study was to investigate the
influence of “happy hour” specials on self-reported alcohol pur-
chases, only data from the standard APT were used as a basis for
computer simulation. The following prices were included in the
APT: $0.00 (free), $0.25, $0.50, $1.00, $1.50, $2.00, $2.50, $3.00,
$4.00, $5.00, $6.00, $7.00, $8.00, $9.00, $10.00, $15.00, and
$20.00. Simulated consumption at each price point was con-
structed using means and standard deviations in overall responding
at that respective price point. Simulated consumption series that
met criteria for systematic responding (Stein, Koffarnus, Snider,
Quisenberry, & Bickel, 2015) and R2 values greater than 0.8 were
included in the simulations used to compare unit elasticity meth-
ods. A complete description of the computer simulation, as well as
the source code necessary to reproduce the data and analyses, is
provided in the GitHub repositories of Shawn P. Gilroy.

Peer-Reviewed Study Data

Data from a peer-reviewed study were used to evaluate relation-
ships between individual calculations of Pmax and related behav-
ioral indicators of substance abuse. Using data from Kaplan and
Reed (2018), the elasticity of demand was determined from re-
sponding on the APT and the results from each method of calcu-
lating Pmax were compared with related indicators of alcohol
consumption. Specifically, Kaplan and Reed (2018) administered
the Daily Drinking Questionnaire (Collins, Parks, & Marlatt,
1985), which assessed self-reported weekly instances binge-
drinking, number of drinks consumed, and total number of hours
spent drinking. Although Kaplan and Reed (2018) administered
multiple APTs (e.g., with and without drink specials), only the
initial, standard version was used in the present study. The prices
included in these data were identical to those used in the simulated
data series and a total of 1,104 subjects participated in the study.

Nonlinear Model Fitting

Demand curve analyses were performed using the beezdemand
R package (Kaplan, Gilroy, Reed, Koffarnus, & Hursh, 2018), a

peer-reviewed tool that features various modeling methods spe-
cific to operant demand. Individual Q0 and � values were fitted
using FitCurves at default settings for the exponential model of
demand. Optimization in beezdemand was performed using the
Gauss–Newton optimizer included in the default nonlinear curve-
fitting method (nls) in the R program (R Core Team, 2017).
Scaling constant k was determined separately for each simulated
series by subtracting the minimum level of consumption from the
maximum level of consumption, each in log10 units, and adding a
value of 0.5. A value of 0.5 was added to this range to minimize
risks associated with using a k value that does not reflect the full
range of observed consumption values (Gentile, Librizzi, & Mar-
tinetti, 2012; Kaplan, Foster, et al., 2018).

Calculations of Unit Elasticity

Four methods for determining Pmax were evaluated and all
calculations were performed using the R statistical program (R
Core Team, 2017). All materials used to simulate participants,
calculate Pmax, and perform analyses have been open sourced, and
details for acquiring these resources are provided in Shawn P.
Gilroy’s GitHub repositories. Each method included in this eval-
uation is listed and explained below.

Observed Pmax. As an alternative to evaluating the slope of a
fitted model, or numerically approximating it, an “observed” Pmax

can be inferred from the highest levels of observed responding, the
empirical Omax (Greenwald & Hursh, 2006). As Pmax is related to
Omax, the empirical Omax (i.e., based solely on observed data) can
be assumed to represent the ordinate of unit elasticity while Pmax

would be represented by the abscissa (i.e., price). In this way, the
observed Pmax infers model slope without a model by using the
location of the empirical Omax on the x-axis (i.e., price). Numer-
ically, the total levels of responding are calculated at each mea-
sured price point by multiplying levels of consumption by the
corresponding unit price. This provides a series of values that
reflect the maximum levels of responding or work output at each
price point. From these values, the unit price associated with the
highest levels of responding, or maximum work output, is consid-
ered to represent the observed Pmax. Additionally, we note that in
cases where more than one Omax was observed, the lower unit
price was considered the observed Pmax, consistent with earlier
peer-reviewed software (Kaplan, Gilroy, et al., 2018).

Approximate Pmax. First introduced along with the exponen-
tial model demand (Hursh & Silberberg, 2008), and later revised
(Hursh, 2014), the unit price where a demand curve reaches unit
elasticity can be approximated numerically using fitted model
parameters.4 This calculation is not derived from the slope, per se,
though it results in a value that closely approximates the true Pmax.
The latest form of approximate Pmax is calculated as follows:

PMAX � 1
Q0 � � � k1.5 � (0.083 � k � 0.65)

Limitations of this approach have been noted by model authors,
namely, that error varies significantly with respect to the size of
scaling parameter k, and thus, the range observed in overall levels

4 In addition to using fitted model parameters, the approximate Pmax uses
additional constants that were determined by the original authors to im-
prove slope approximation.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

591ANALYTIC PMAX



of consumption. However, despite limitations, this calculation has
been found to be a good approximation for many combinations of
fitted demand parameters (Hursh, 2014; Hursh & Roma, 2013).

Derivative Pmax. In contrast to numerical approximates, the
slope of the exponential demand curve can be iteratively evaluated
using its first order derivative and specialized computer program-
ming. The results of the approach have been previously referred to
as a true or exact Pmax (Hursh & Roma, 2013), as results are
determined using a computationally exhaustive process that di-
rectly evaluates model slope at various prices until the first order
derivative equals �1. The first order derivative, as provided by
Hursh and Silberberg (2008), takes the following form:

f�(x) � ln10k � (�� � Q0 � x � e���Q0�x)

Although not required, this method can be adapted into a more
easily optimized loss function by adding a constant of 1 and taking
the absolute value of the result. A visual comparison of these two
objective functions is provided in Figure 2. In effect, this modifi-
cation represents Pmax as a zero value when the slope of the
demand function is �1 (i.e., �1 � 1 � 0). Further, taking the
absolute value produces a V-shaped function wherein the lowest
point in this function represents Pmax. This form improves the
speed and simplicity of an optimization routine, which iteratively
searches for the price wherein the loss function is at its minimum.
This loss function was used along with the default minimization
method in R, optim, using a port of the Broyden–Fletcher–
Goldfarb–Shanno algorithm (Nash, 1990).

Analytic Pmax. As an alternative to empirical, approximate,
and iterative computer methods, Pmax can be calculated analyti-
cally using the Lambert W function (also known as the omega
function). Simply put, the terms of the first order derivative pro-
vided by (Hursh & Roma, 2013) can be rearranged (where �, Q0,
and constant k are known) so that unit price can be solved at a
slope value of �1. The W function can be used to address the x
term appearing inside and outside of the exponent, which was a
barrier reported previously. Using the W function, one can con-
struct the form required to use the W function (i.e., y � xex) by
rearranging several terms, as follows:

y � ln10k � ��� � Q0 � x � e���Q0�x�
�1 � ln10k � ��� � Q0 � x � e���Q0�x�

�1
ln10k � �� � Q0 � x � e���Q0�x

In these equations, the necessary form to use with the W function
can be prepared so that a solution for a slope of �1 is possible. The
final solution for Pmax using the W function is as follows:

PMAX �
�W0(�1 ⁄ ln10k)

� � Q0

While well-suited to this application, it warrants noting that the
Lambert W function is complex and multiple branches and solu-
tions can exist (i.e., real and imaginary). However, for our pur-
poses, we will use the primary branch of this function, as denoted
by W0. This branch has both real and imaginary solutions and this
method of solving for Pmax is possible so long as the value used in
W0 exists within the following range:

�e�1 � �1
ln10k � 0

Put simply, this approach results in an exact calculation of Pmax

provided that the k used to fit the model exists above a certain
lower limit. In this approach, especially small ks would push the
value supplied to W0 outside of the range specified above and into
a region where no real solutions exist. Solving for this absolute
lower limit, an analytic Pmax can be calculated in all cases where
constant k that exists above a lower limit of 1.180535 and the exact
determination of this value is provided below:

e
ln10 � k � �

1.180535 � k � �

Given that this novel approach is an exact solution for the
derivative approach, the analytic method should provide results
that are identical to the derivative method without the need for
specialized computer programming. In contrast, analytic Pmax may
be performed using scientific calculators or customized spread-

Figure 2. Model slope and modified loss function. This figure illustrates a method of solving for Pmax using
the first derivative. The left panel illustrates the value of the first derivative (i.e., slope) and the right panel
illustrates a modified equation (i.e., a loss function) that represents a slope value of �1 as a zero point, which
can then be minimized to determine exact Pmax at a value of 0.
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sheet software. The specific methods used to perform the W
function in this study were derived from the GNU Scientific
Library, an open-source library of mathematical methods (Gough,
2009).5

Data Analysis Plan

The methods described here were systematically compared to
evaluate the accuracy, reliability, and correspondence between
calculations of unit elasticity. Each of the individual unit elasticity
calculations described above was performed for each of the 1,000
simulated series and correspondence was assessed using Pearson
correlations and scatterplots. Scatterplot comparisons were con-
structed to illustrate the correspondence between simulated mea-
sures and correlations were calculated overall as well as with
select, well-fitting models (R2 � .9). Additionally, each method
was applied to data from a published, peer-reviewed study to
compare how each measure of unit elasticity related to various
participant factors. Relationships between Pmax methods and par-
ticipant factors were assessed using Spearman correlations.

Results

The results of simulated comparisons (n � 1,000) revealed that
all approaches for determining Pmax were correlated with one
another though to varying degrees. The distribution of results from
each method for calculating Pmax calculation is illustrated in
Figure 3 and described in Table 1. Relationships between each
method are described in Table 2 and displayed as scatter plots in
Figure 4. Across degrees of model fit, the observed Pmax approach
consistently provided more widely distributed values than the
other approaches, and these ranges are described in Table 1. This
approach reliably produced results that ranged much lower and
much higher than other methods, see Figure 3. Consistent with the
shared mathematical basis for the derivative and analytic ap-
proaches, the results from both approaches were perfectly corre-
lated (r � 1). Similarly, the approximate method provided results
that were highly correlated with both the derivative and analytic

methods (rs � 0.99). In contrast, the observed approach provided
results that were not as strongly correlated overall with the ap-
proximate (r � .29), derivative (r � .28), or analytic Pmax (r �
.28). The results provided by the observed method were more
highly correlated with the approximate (r � .42), derivative (r �
.42), or analytic Pmax (r � .42) in cases with better model fit (i.e.,
R2 � .9). These relationships are more thoroughly described in
Table 2 and illustrated in Figure 4.

Relationships between individual Pmax calculations and various
other indicators were evaluated using data from Kaplan and Reed
(2018). Of the 1,104 participants completing the APT, 960 partic-
ipants demonstrated indicators of systematic consumption (Stein et
al., 2015) and were included in the final analysis. In these cases,
nonlinear modeling converged in 874 of 960 cases (91.04%) and
each calculation of Pmax was evaluated against other related indi-
cators of substance use derived from the Daily Drinking Question-
naire. For the empirical approach, Spearman correlations were
nonsignificant between the observed Pmax and number of reported
monthly binges (r � .00; p � .89), total drinks (r � �.01; p �
.84), and hours spent drinking (r � .01; p � .78). For all other
Pmax methods (i.e., approximate, derivative, and analytic) correla-
tions and levels of significance were identical to the fifth decimal
place. Specifically, Spearman correlations were nonsignificant be-
tween these measures of Pmax and number of reported monthly
binges (rs � .03; ps � .33), total drinks (rs � .04; ps � .27), and
hours spent drinking (rs � .05; ps � .15). This comparison was
conducted not to establish significant relations between Pmax and
substance use indicators, but to demonstrate the overall correspon-
dence between the various approaches to calculating Pmax and
their relations with drinking measures. These results suggest that
the approximate, derivative, and analytic methods of obtaining
Pmax may be interchangeable insofar as using them in nonpara-
metric statistical tests (i.e., relative ranking is unaffected).

Discussion

The results from applied behavioral economic studies of de-
mand are increasingly used as evidence to support various initia-
tives, such as investigating mechanisms related to substance abuse,
as well as public policy (Hursh & Roma, 2013). However, the
presence of varying approaches for calculating Pmax naturally
introduces some degree of error when determining prices that exist
in the inelastic and elastic ranges. This is an area in need of
precision and reliability, as both clinical and policy decisions may
be directly or indirectly informed by the elasticity of demand for
some good (e.g., nicotine, alcohol) or reinforcer (e.g., behavior
functions, incentives). Precision is paramount here, as even small
levels of variability could result in negative effects for clinical
applications (e.g., poorer treatment outcomes), organizational-
level decisions (e.g., employee attrition, ineffective incentive sys-
tems), and policy-level decisions alike (e.g., ineffective policy,
limited replicability, poor use of taxpayer funding). Given that

5 All elements of this report are provided under the GNU General Public
License, Version 3.0, by Shawn P. Gilroy. The source code necessary to
generate these simulations as well as perform each of Pmax calculations is
provided on the corresponding author’s GitHub account in the repository
named Pmax Evaluation. Unless stated otherwise, all source code was
written and executed within the R statistical program. These resources can
be found at https://github.com/miyamot0/PmaxEvaluation.

Figure 3. Box plot and unit elasticity distribution for simulated series.
This figure illustrates the range of values the range of Pmax values resulting
from each type of calculation. The information provided here highlights
substantial variability in the observed method, minimal variability in the
approximate method, and exact correspondence between derivative and
analytic methods.
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there is a need to precisely and reliably determine Pmax, this report
was designed to answer the following questions: (a) To what
degrees do the observed, approximate, derivative, and analytic
methods for calculating Pmax correspond with one another? (b) To
what degree does the analytic method correspond with the deriv-
ative method of calculating Pmax? (c) To what degree do results
from the Pmax methods correlate with related behavioral indica-
tors?

Based on results from this study, all methods for calculating of
Pmax appear to be correlated with one another, though to varying
degrees. That is, the approximate Pmax was very closely related to
the derivative Pmax and the analytic Pmax was identical to the
derivative Pmax. A 1:1 match between the derivative and analytic
Pmax was expected given the mathematical basis from which the
analytic method was derived. However, the observed Pmax method
was less strongly correlated with the other calculations of Pmax and
this difference likely exists for several reasons. First, the observed
Pmax can only ever take the value of a unit price that was directly
sampled. Given that this is an empirical measure, the observed
Pmax is inevitably constrained to a limited range of possible values.
That is, this measure offers far less flexibility than other Pmax

methods. Second, prices used in purchase tasks are rarely equidis-
tant (Kaplan, Foster, et al., 2018) and adjacent prices are likely to

increment across several orders (e.g., 10 to 20, 50 to 100, 100 to
1,000). That is, prices are more densely sampled in the lower
ranges and less densely sampled in the upper ranges. As a result,
precision is more likely to decrease with a higher observed Pmax

simply because the distance between potential values is likely to
grow at a near exponential rate. This is apparent in Table 1, as the
discrepancy between the observed Pmax and other methods ap-
peared to grow larger with greater Pmax values. To a much lesser
degree, the approximate Pmax consistently diverged from the de-
rivative and analytic Pmax as well. As indicated in Table 1, overall
differences between the derivative/analytic and approximate meth-
ods became larger along with larger Pmax values. As such, the
approximate method appeared to introduce differential levels of
error into the calculation of Pmax as well.

While providing identical results, the analytic Pmax method
offers several advantages over the computationally intensive de-
rivative method. First, the analytic method is much simpler and
can be performed by researchers without programming skills. For
example, this method can be accommodated in customized spread-
sheet software or even on websites. As an example of the simplic-
ity, the analytic method has been adapted for use in a web-based
calculator hosted by Shawn P. Gilroy.6 In this way, researchers
without programming skills can easily access a method for calcu-
lating an exact form of Pmax. Further, this code can also be easily
incorporated into existing behavioral economic software (Gilroy,
Kaplan, Reed, Koffarnus, & Hantula, 2018; Kaplan, Gilroy, et al.,
2018). Second, the analytic method also obviates the need for
optimization and the potential for issues associated with it (e.g.,
poor starting values, approximations of Jacobian/Hessian). That is,
the derivative method would require reasonable starting values to
iteratively search for Pmax (i.e., slope of �1), similar to parameter
estimation. Third, improving the accessibility of this newer and
exact form of Pmax (relative to the derivative method) serves to
limit, if not eliminate, the inherent variability introduced when
relying on approximate or observed Pmax values. That is, research-

6 A web-based tool has been developed to support the use of analytic
Pmax and requires only the fitted model parameters. This tool is based on the
GNU Scientific Library, accurate with study methods to the eighth decimal
place, and provided at the following location: http://www.smallnstats.com/
index.php?page�PMAX.

Table 1
Distribution of Unit Elasticity Estimates in Simulated Data Series

Percentile

Measure 0 25 50 75 100

Overall distribution (N � 1,000)a

Analytic 2.45655 4.46924 5.34454 6.39693 12.20367
Derivative 2.45655 4.46924 5.34454 6.39693 12.20367
Approximate 2.47089 4.4321 5.27383 6.21326 10.97175
Observed 1.5 5 6 8 20

Series with R2 � .9 (N � 100)b

Analytic 3.39425 4.43719 5.33661 6.17661 9.51373
Derivative 3.39425 4.43719 5.33661 6.17661 9.51373
Approximate 3.41699 4.42331 5.27033 6.09176 8.29142
Observed 2.5 5 6.5 8 20

Note. Quantile distributions for each of the unit elasticity methods.
a Overall R2 for all series (M � .85, SD � .03). b Series with R2 � .9 (M � .92, SD � .01).

Table 2
Correlation Matrix of Point of Unit Elasticity Methods in
Simulated Data Series

Measure Approximate Derivative Observed Analytic

Overall (N � 1,000)
Analytic 1 .99251 .29050 .99251
Derivative — — .28274 1
Approximate — — — .28274
Observed — — — —

Series with R2 � .9
(N � 100)

Analytic — .99498 .4285 .99498
Derivative — — .4210 1
Approximate — — — .4210
Observed — — — 1

Note. Pearson correlation matrix for each of the four unit elasticity
methods.
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ers may calculate the analytic Pmax just as easily as they would
calculate an approximate Pmax, requiring only the Q0, �, and k
values. Even more, this approach effectively eliminates the error
associated with relying on empirical or approximate calculations
of Pmax and the associated challenges with varying k values. In
sum, this novel analytic approach consistently resulted in Pmax

values identical to the derivative, or exact, Pmax and this method
can be easily and reliably used in various behavioral economic
applications.

Limitations

Although the methods introduced here provide one means of
reducing sources of error in assessing elasticity, we note that the
manner of calculating Pmax is only one of several sources of
variability. For example, the nature of purchase tasks and how
consumption data are collected naturally influence the analyses
that follow. That is, factors such as the range of prices sampled, the
step sizes between these prices, and characteristics of individual
prices (e.g., left-digit effects) can each affect analyses of demand.
Even further, these novel methods are only an improvement inso-
far as the exponential or exponentiated models of demand effec-
tively represent the data being modeled.

Notwithstanding that the results from computer simulation and
real-world data are encouraging and support the analytic approach
as a “drop-in” replacement for exact (i.e., derivative) Pmax meth-
ods, additional replication is necessary for several reasons. First,
additional study is necessary to understand the relative benefits of
this novel approach over other methods for evaluating elasticity.
For example, there may be situations in which differences between
Pmax approaches may be so minor that any potential differences
would affect neither results from statistical comparisons between
groups nor the inferences drawn. As such, in certain cases, the
earlier approaches may introduce such low levels of error that

subsequent analyses are not affected. Second, further study is
necessary to determine how the limits imposed on k values in this
newer method would impact real-world use. The issue of a hard
lower limit may ultimately be a nonissue, as it is more often
suggested to err on the side of larger k values by adding a small
constant (i.e., 0.5; Kaplan, Foster, et al., 2018) and because k
values less than 1 would suggest that consumption did not change
even one log10 unit (i.e., a slope of �1 was not even observed). To
this effect, further research on how to most effectively identify
proper k values is necessary and the limits imposed by this method
(i.e., W0 and �e�1) may be prudent as an absolute lower limit
moving forward. However, the fitness of this guideline is an
empirical question to be asked along with future replication with
further real-world and simulated usage.
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