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Behavior analysis and statistical inference have shared a conflicted relationship for over fifty years. How-
ever, a significant portion of this conflict is directed toward statistical tests (e.g., t-tests, ANOVA) that
aggregate group and/or temporal variability into means and standard deviations and as a result remove
much of the data important to behavior analysts. Mixed-effects modeling, a more recently developed
statistical test, addresses many of the limitations of more basic tests by incorporating random effects.
Random effects quantify individual subject variability without eliminating it from the model, hence pro-
ducing a model that can predict both group and individual behavior.
We present the results of a generalized linear mixed-effects model applied to single-subject data taken
from Ackerlund Brandt, Dozier, Juanico, Laudont, & Mick, 2015, in which children chose from one of
three reinforcers for completing a task. Results of the mixed-effects modeling are consistent with visual
analyses and importantly provide a statistical framework to predict individual behavior without requiring
aggregation. We conclude by discussing the implications of these results and provide recommendations
for further integration of mixed-effects models in the analyses of single-subject designs.
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Behavior analysis has a long tradition of
using visual inspection to describe the effects
of behavioral manipulations (Parsonson, 1999;
Parsonson & Baer, 1992). Visual inspection is
especially well-suited to the single-subject
experimental preparations often applied to
the analysis of reversal and multiple-baseli-
ne/element designs. Such experimental
methods are powerful in their abilities to dem-
onstrate prediction and control (Perone,
1999), two pinnacle goals of science (Sidman
1960; see Killeen 2018 for a recent discussion).
Additionally, visual analysis conveys differences
of practical significance, that is, the magnitude
of the effect and if the effect will make a dif-
ference in the individual’s life. Inferential sta-
tistics, on the other hand, focus on statistical
significance and although recent efforts have
been made to highlight the importance of
practical significance (e.g., effect sizes), such
focus may come secondary to that of a small p-
value (Head, Holman, Lanfear, Kahn, & Jen-
nions, 2015).

Historically, a significant proportion of
behavior-analytic researchers have rejected, or
at the very least been cautious of, the incorpo-
ration of inferential statistics into the analysis of
single-subject design data (Fisher & Lerman,
2014; Moeyaert, Ferron, Beretvas, & Van den
Noortgate, 2014; Shadish, Zuur, & Sullivan,
2014). Two principle concerns are typically
cited. The first concern relates to the philo-
sophical disagreement between inductive
(behavior analysis) and hypo-deductive (infer-
ence from sample to population;
i.e., inferential statistics) methods. This argu-
ment, although important, will not be
addressed here (see Baron, 1999 for a discus-
sion). The second concern, that of the practical
implementation and interpretation of inferen-
tial statistics, will be the focus of this paper. We
want to make clear that we are not advocating
for the abandonment of visual analysis in lieu
of statistical inference; however, visual analysis
is not infallible (Danov & Symons, 2008; Fisch,
2001) and additional analytical tools would be
valuable. We believe incorporating statistical
techniques, complementary to visual inspection, is
a fruitful endeavor and could further our
understanding of behavior and improve our
communication with other fields of psychology
and funding agencies (Young, 2018a).

The focus of this paper specifically is to
address two principle barriers of applying
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inferential statistics to single-subject design
data that might make behavior analysts appre-
hensive about using statistical inference: the
compression of variability into mean scores
and the aggregation of behavior across time
into single data points (Branch, 1999). These
analytic concerns typically result from the
problematic applications of between-group
inferential statistics to longitudinal data
(i.e., single-subject designs). Even pseudo-
nonparametric alternatives (e.g., Mann–
Whitney U), by converting data points to ranks
(Fay & Proschan, 2010), do not address the
limitations of the application of between-
group statistics to single-subject designs
because by converting data points to ranks,
information is further lost with all that
remains being the rank order of subjects.
For many behavior analysts, exposure to

inferential statistics may be limited by the rela-
tively minimal statistical course requirements
of an academic degree. Unfortunately, most
introductory statistic courses—the ones most
likely to be taken—focus on basic between-
group inferential statistics such as the t-test
and analysis of variance (ANOVA). These sta-
tistical methods are simple to implement and
interpret, however they are only appropriate
under limited experimental conditions. The
conditions under which basic inferential sta-
tistics are appropriate are only when the
experimental conditions match the assump-
tions of the statistical test. However, these
assumptions are usually strict and data
obtained from single-subject designs, specifi-
cally, violate these assumptions. We briefly
describe these assumptions and discuss how
data obtained from single-subject designs fail
to meet them.

Assumptions of Standard Statistical Tests

Often times, the primary goal of a statistical
test or model is to analyze the difference
between means or estimate/predict an out-
come from a given set of predictor variables.
Almost inevitably, the model will not include
all the information needed to predict the out-
come with perfect accuracy. Differences
between the model’s predicted values and the
“actual” observed values are termed “resid-
uals.” In many statistical tests, the goal is to
minimize the amount of error that is “unex-
plained” (i.e., residuals). Greater amounts of

error reduce the precision of estimates and
result in more inaccurate predictions.

Normality of Residuals
The first assumption, normality, relies on

the distribution (e.g., frequency) of a model’s
residuals approximating a normal distribution
(i.e., bell curve; see top panel of Fig. 1). For
standard tests, the distribution of the outcome
variable is examined for normality as such
instances will usually result in normally distrib-
uted residuals. Data obtained from single-
subject designs may meet this assumption, but
commonly, especially when rate of behavior is
the outcome (e.g., counts of behavior), the
distribution of behavior does not always
approximate a normal distribution. Depend-
ing on the given experimental arrangement
and behavior being measured, rates of behav-
ior (e.g., aggression) may exhibit more of a
skewed or truncated distribution (see bottom
panel of Fig. 1) such as interventions that suc-
cessfully reduce behaviors to zero or near-zero
rates.

Fig. 1. Top panel: A normal distribution of scores. Bot-
tom panel: Poisson distribution of counts.
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Homogeneity of Variance
Typically, standard statistical tests rely on

the assumption that the variation around the
residuals’ mean is similar across groups or con-
ditions. The distribution of the test statistic
(e.g., t, F) may be biased when variances, sam-
ple sizes, or exposure to different conditions
are unequal. Take for example an experiment
designed to decrease the occurrence of behav-
ior. Rate of behavior may be high and variable
during the baseline phase, but under a treat-
ment phase, rates of behavior may be low. In
addition, different numbers of sessions could
be observed within each condition. Thus, both
the variation around the means of each condi-
tion would not be similar, and sample sizes
could be quite discrepant. Such an observation
would violate the assumption of homogeneity
of variance making typical inferential statistics
inappropriate.

Independence of Observations
A final assumption that is possibly the most

problematic to applications of single-subject
design data is that of independence of obser-
vations. Data are independent when one
observation does not influence another obser-
vation. This assumption is violated in any
experimental design where the subject’s
behavior is sampled repeatedly. Behaviors
emitted by a single subject will be more closely
related compared to behaviors emitted by two
different subjects. Results obtained by way of
statistical tests that violate the aforementioned
assumptions should be interpreted cautiously,
as violations may result in biased estimates or
estimates that are deemed statistically signifi-
cant when, in reality, they are not (e.g., Type I
error).

Mean Comparisons

Tests that compare two means, such as the t-
test, represent the most basic aggregation of
variability into means and standard errors.
These tests compare two independent groups
or the same group with two data points
(e.g., paired t-test). ANOVA (or equivalently,
linear regression) is relatively easy and
straightforward and allows for the comparison
of more than two means. With most statistical
tests, the degree to which estimates will be effi-
cient (in terms of minimizing the error) and

unbiased (reflective of the “true” value)
depends in part on the assumptions of the
test. As discussed earlier, in a standard regres-
sion model, the following assumptions are
important: 1. Normality of residuals; 2. homo-
geneity of variance; 3. independence of obser-
vations. However, when some of these
assumptions are not met, estimates from ordi-
nary least-squares regression1 may not be
efficient and unbiased. Indeed, because single-
subject experimental designs are often set up
to measure behavior over time, the standard
linear regression has no way of accounting for
the correlation between multiple observations
within a given unit (e.g., subject), thus violat-
ing the assumption of independence.

Mixed-Effects Models

More recent developments in longitudinal
statistical analyses, namely mixed-effects
modeling, can aptly address the concerns of
data compression both across individuals and
across time (Hox, Moerbeek, & Van de
Schoot, 2017). Although mixed-effects model-
ing (also known as hierarchical or multilevel
modeling) has grown in popularity in some
corners of behavior analysis (e.g., delay dis-
counting; Friedel, DeHart, Frye, Rung, &
Odum, 2016; Kirkpatrick, Marshall, Steele, &
Peterson, 2018; Young, 2017, 2018b), the
application to single-subject designs is limited
(Baek & Ferron, 2013; Nugent, 1996). Mixed-
effects models are designed to handle certain
violations of assumptions in the normal regres-
sion model (Boisgontier & Cheval, 2016) that
arise when analyzing single-subject design
data, ultimately providing more accurate and
less biased predictions of the underlying
trends in the data. Like other inferential statis-
tics, mixed-effects models provide predictive
coefficients, in this case a b (unstandardized)
or β (standardized) value, which describe the
change in the dependent variable for every
unit change in the independent variable.
These are referred to as fixed effects and can
represent both categorical and ordinal vari-
ables such as the group to which a participant
is assigned (e.g., control, treatment) or a char-
acteristic of the participant (e.g., sex, species)

1The most common method for linear regression seeks
to minimize the model fit residuals resulting from a linear
combination of predictors.
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and continuous variables including time or
session. Fixed effects are not unique to mixed-
effects models; in normal regression models,
these fixed effects are the values that are tradi-
tionally reported.
Further, interactions of fixed effects can be

created to model more complex interactions
such as the effects of condition or phase on
behavior across time. An important character-
istic of fixed effects is that the coefficient
reflects an effect of a variable that is fixed for
every participant. That a coefficient is estimated
with some amount of error, typically reported
as the standard error, should not be taken as a
differential measure of variability for one indi-
vidual compared to another; rather, the stan-
dard error is typically reflective of the
variability or uncertainty in the predictor vari-
able as related to predicting the outcome.
As a behavior analyst, one should intuitively

feel that such a strong assumption —that all
individuals in a group should be assigned a
single value—is probably not appropriate.
Instead, a more appropriate assumption might
be that a given experimental manipulation
(or treatment) will affect individuals’ behavior
an average of X amount, but that some indi-
viduals’ behavior may be more or less respon-
sive. Quantifying the degree to which one
individual’s behavior is responsive relative to the
average is exactly the purpose of random
effects. What establishes mixed-effects models
as a superior alternative to simpler between-
group statistics when analyzing single-subject
design data is the inclusion of random effects.
Random effects quantify individual subject var-
iability without eliminating it or assigning it to
an overall error term (which assumes that the
individual variation around the grand mean is
identical for all participants) as is done in t-test
and ANOVA analyses (Fig. 2).
Two types of random effects can be

included in the analyses of single-subject
design data. First, a random intercept allows
for the behavior of each individual to start at a
different place (if zero on the predictor scale
represents initial performance). This contrasts
with the fixed-effects arrangement, which
asserts that all individuals’ behavior in a group
or condition begins at the same level. Second,
one or more random slopes allow for individ-
ual differences in the change in behavior
across minute, session or condition. Again, this
contrasts with the simpler fixed-effects-only

models, which estimate a single slope value for
all individuals’ behavior in a group or
condition.

Along with fitting one regression line to the
mean of all individuals (e.g., fixed effect) to
predict sample or group wide behavior, includ-
ing random effects, allows for the prediction of
an individual’s behavior to vary in the context
of the larger group. For example, the fixed-
effect coefficient in a hypothetical regression
model may estimate that individuals in Group
A display a mean difference of X amount
greater compared to Group B. A random-
intercept component may estimate that Subject
1 in Group A shows X amount greater com-
pared to Group A’s mean, whereas the
random-intercept component may also esti-
mate that Subject 2 in Group A shows X
amount less compared to Group A’s mean
despite an overall difference between the two

Fig. 2. Comparison of model with only fixed effects
and model with random effects. Top panel: standard
regression model fit to grand mean. Bottom panel: mixed-
effects model with random effects for intercept (condi-
tion) and slope.
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groups’ means. Panel 1 of Figure 2 compares
the model fit of a traditional ANOVA or regres-
sion analysis with only a fixed effect that was
fitted to all participant data in Group A. Panel
2 of Figure 2 displays the inclusion of a random
intercept for condition and a random slope for
session. Note that the three regression lines’
intercepts differ as do their slopes. Such impor-
tant complexity cannot be modeled in tradi-
tional ANOVA or regression methods.
A second strength of mixed-effects model-

ing is the ability to account for the correlation
of nonindependent data points within a
defined cluster. Clustering describes data that,
by group association, is related in a meaning-
ful way. Therefore, within a data set, multiple
“levels” exist. For example, when comparing

classroom (Level 1) standardized exam perfor-
mance within a school (Level 2), data
obtained from individual classrooms are clus-
tered together because they share the same
teacher and classroom environment (Fig. 3).
By analogy, data obtained from single-subject
designs are also clustered. Data obtained from
sessions (Level 1) are clustered together
because they share the same subject (Level 2;
see Fig. 3). Importantly, mixed-effects model-
ing is flexible in how this clustering can be
accounted for. For instance, data obtained
from contiguous sessions (e.g., session 1, ses-
sion 2) are expected to be more correlated
than data obtained from sessions farther apart
(e.g., session 1, session 10). In this case, an
autoregressive correlation, in which the

Fig. 3. Mixed-effects model hierarchy. Top figure: example from education research. Bottom figure: example from
single-subject design.
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correlation between data points decreases as
the temporal distance between them increases,
would be appropriate.
Another benefit of mixed-effects modeling

is its ability to maximize the degrees of free-
dom by using all available data points and
therefore increasing the statistical power of
the test. In order to analyze data at the single
subject level, one could fit a regression model
to each subject’s data. One could then exam-
ine the values or coefficients from the individ-
ual regression fits and conclude that subjects
respond in a similar way or that a given proce-
dure might affect subjects in a similar way
(i.e., decrease behavior) but the amount of
information to be used in each regression will
be a fraction of the whole and could lead to
large variations in estimates. In addition, by
increasing the number of statistical tests
(e.g., a regression model for each participant),
the propensity to commit Type I error (con-
cluding there is a statistically significant effect
when there is not one) increases. Mixed-
effects modeling not only estimates a “mean”
change (which can be compared between
groups using pairwise comparisons) but, as
mentioned earlier, these models allow individ-
ual subjects’ behavior to vary (e.g., random
effects) from that “mean” change. Therefore,
because information from all participants is
used, estimates will likely be more accurate
and “extreme” cases or outliers will be shrunk
towards the overall mean (Kirkpatrick et al.,
2018), thereby limiting the need to exclude
subjects from the analyses.
Mixed-effects models can also more accu-

rately model longitudinal changes in behavior.
One assumption could be that behavior
change across time occurs at a linear rate.
However, change in a target behavior could
also occur in a nonlinear fashion. Mixed-
effects models, similar to multiple regression,
can incorporate transformations of continuous
predictors to model behavior that changes in
a nonlinear way (Hox et al. 2017).
Finally, mixed-effects modeling allows for the

analyses of nonnormally distributed data and
can account for certain types of missing data
using Maximum Likelihood Estimation
(Krueger & Tian, 2004). This family of models
is referred to as generalized linear mixed-
effects models. Whereas these more complex
approaches make analyses and interpretations
of results potentially more complicated, model

estimates are less likely to be biased and the
probability of committing Type 1 error is mini-
mized. Generalized linear mixed-effects models
extend the linear mixed-effects models and can
analyze count, ordinal, binomial, multinomial,
zero-inflated (e.g., disproportionate number of
zeros), and over-dispersed (e.g., the variance of
scores is greater than predicted) data while still
accounting for the information that behavior
analysts find valuable (Bolker et al. 2009; Hox
et al. 2017). The flexibility of generalized linear
mixed-effects modeling is especially relevant to
behavior analysts as single-subject designs are
often measured using discrete counts of behav-
ior, which traditional analyses such as the
ANOVA are not equipped to analyze.

Although these generalized variants still
model the outcome variable as a linear combi-
nation of predictors (e.g., Y = B0 + B1x1 +
B2x2), a link function is used to transform this
linear combination onto the space of the out-
come variable, especially when the outcome
variable is not normally distributed (e.g.,
counts, rates that cannot go below 0). In addi-
tion, without a proper link function, variance
of the residuals may not be constant, giving rise
to biased results. Most applicable to behavior
analysts are the poisson and negative binomial
distributions, which address count data
(i.e., whole integers; e.g., 1, 2, 3). In addition,
adjustments for zero-inflation and over-
dispersion would commonly be necessary to
more accurately describe count data.

In order to demonstrate the power of
mixed-effects modeling, we reanalyzed data
from Ackerlund Brandt et al. (2015), present
the mixed-model results, and indicate how
they compare to the conclusions obtained
through visual analysis. The purpose of this
reanalysis is to provide a basic demonstration
of how mixed-effects modeling can be applied
to single-subject design, without needing to
aggregate data into simpler units such as
means and standard deviations. We also pro-
vide the access to the dataset2 and R code
(Version 3.5.1; R Core Team, 2018).

Method

Source Study Methods
To illustrate the application of mixed-effects

modeling to single-subject design data, we
extracted3 data from Study 1 by Ackerlund
Brandt et al. (2015). The researchers were
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interested in examining the degree to which
choice functioned as a reinforcer. In their
study, 30 typically developing children com-
pleted a choice assessment configured in a
concurrent-chains arrangement. Fifteen pre-
sentations (trials) were conducted in each ses-
sion. During the initial link, participants
indicated whether they preferred the a) child
choice (praise and five edible reinforcers pre-
sented on a plate and child chose among the
options); b) experimenter choice (praise and
five edible reinforcers presented on a plate
and experimenter chose among the options);
or c) control (praise and the presentation of
an empty plate). During the terminal link, par-
ticipants engaged in expressive picture label-
ing and if they correctly answered
(unprompted or not), the outcome chosen
during the initial link was delivered. The
dependent variable was the frequency of selec-
tions during the initial link. For more details
related to the study procedures, see Ackerlund
Brandt et al. (2015).

Source Study Results
The source study did not apply any statisti-

cal tests to the data, rather the researchers uti-
lized visual analysis to describe trends in the
data. Ackerlund Brandt et al. (2015) described
that two thirds (20/30) of the participants
showed a preference for child choice, whereas
one third (10/30) showed no difference in
preference between the child and experi-
menter choice options. The authors described
three distinct patterns among the participants
who preferred the child choice: a) high and
consistent preference, b) variable levels but
higher overall, and c) similar preference ini-
tially transitioning into higher preference.

Data Extraction
We independently extracted the data from

Figures 1 and 2 (pgs. 351-352; 15 participants
total) of the source study using WebPlotDigiti-
zer (Mani, Sharma, & Singh, 2018). WebPlot-
Digitizer has been shown to result in high
levels of reliability and validity for extracting
single case design data (Drevon, Fursa, &

Malcolm, 2017). Data were first rounded to
the nearest integer and 100% of the data were
compared using exact interobserver agree-
ment (Reed & Azulay, 2011). Total agreement
was 100%.

Data Analysis
A two-level generalized linear mixed-effects

model4 was created to investigate the effects of
choice type on choice selection in the initial
link using the glmmTMB package (Brooks
et al., 2017) for model fitting and the DHRMa
package (Kuznetsova, Brockhoff, & Christen-
sen, 2017) to conduct model diagnostics. By
two-level, we mean that session (i.e., session
1, session 2, etc.; level 1) and condition
(i.e., control, experimenter, child) are nested
within an individual (level 2; see also Fig. 2 for
an example of nesting). All analyses were con-
ducted in the R statistical environment
(Version 3.5.1; R Core Team, 2018). It should
be noted that a variety of programs are capa-
ble of conducting mixed-effects modeling
including SPSS (“IBM SPSS Statistics
Overview,” n.d.), SAS (“Analytics, Business
Intelligence and Data Management,” 2018),
and STATA (StataCorp & Others, 2007). We
chose R because it is open source and provides
a variety of additional features for data
preparation.

As mentioned earlier, frequency of selec-
tions served as the dependent variable. The
fixed effects (independent variables) included
condition (treated as a nominal factor consist-
ing of three values; i.e., control, experimenter,
child), session number (treated as an interval
variable; i.e., session 1, session 2), a logarith-
mic adjustment for session (logsession; models
the nonlinear change in frequency of selection
across sessions), and an interaction term of
condition by session number. For the condi-
tion variable, dummy coding was used such
that two coefficients are estimated: the differ-
ence between the experimenter and control
conditions and the difference between the
child and control conditions. The intercept,
therefore, reflects the estimated mean

2https://github.com/brentkaplan/jeab-mixedeffects
3We were unable to obtain the original data from the

corresponding author.

4We elected to conduct a generalized linear mixed-
effects model over a linear mixed-effects model despite
the increase in model complexity because the target
behavior was measured in counts. Preliminary analyses
indicated that the generalized model presented here pro-
vided a superior fit to a misspecified linear model.
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frequency of selections of the control condi-
tion (i.e., the reference group) at session “0”.
Without the inclusion of random effects, a

fixed-effects-only model would be a standard
generalized linear regression. A standard
model would result in an “intercept” for each
condition (i.e., the mean frequency of selec-
tions at session “0”) and allow the frequency
of selections to change (increase, decrease,
stay the same) at different rates for the three
conditions. For example, this standard model
could allow the frequency of selections for the
control condition to stay the same while allow-
ing for an increase in child-choice selections.
However, this model would only provide pre-
dictions for the participants as a whole group
and does not accommodate individual varia-
tions around the group’s mean selections.
A random intercept of child, therefore, was

specified to allow for individual variations in
each child. A random slope each for condition
and for session were also specified to allow for
individual variation in the rate of selections
over the progression of sessions and by condi-
tion. In order to determine if the random
effects accounted for a meaningful proportion
of variance, the interclass correlation (ICC)
was calculated. The ICC is the amount of vari-
ance accounted for within a cluster
(e.g., subject) by the random effect. Though
no objective rule exists, researchers suggest
that an ICC of at least 5% justifies the inclu-
sion of a random effect (LeBreton & Senter,
2008). The ICC for child was 30% meaning
that the random intercept accounted for a
large proportion of the variance in the data.
Additionally, the ICCs for the experimenter
and child conditions random slopes were large
at 34% and 35% respectively, indicating that
the rate of change for each condition was dif-
ferent. However, the ICC of the random slope
of log-adjusted session was less than 0.000 sug-
gesting that the random slope for session did
not account for a meaningful degree of vari-
ance in the data. Pairwise comparisons were
conducted to investigate differences in the dif-
ferent choice conditions using the emmeans
package (Lenth, 2018).
The model syntax for both a linear (lmer

package; Bates, Mächler, Bolker, & Walker,
2014) and generalized linear (glmmTMB
package) models can be visualized as:
choice ~ condition + log(session) + condi-

tion*log(session) + (condition + log(session) |

child) where choice frequency is predicted by
the interaction of condition by log adjusted
session. The term (condition + log(session) |
child) is the random-effect term which
includes a random intercept for each child
and random slopes for condition and session.

Results

Figure 4 depicts the study results at the
single-subject level. A visual analysis of selec-
tions confirms that both the experimenter and
child choices were chosen more frequently
over the control choice. Additionally, for most
participants, the child choice was selected
more frequently than the experimenter
choice. This interpretation is similar to that of
Ackerlund Brandt et al. (2015).

The following model-fit results outline the
typical steps of determining the appropriate-
ness and quality of a model fit. First, regres-
sion diagnostics were conducted to determine
the quality of the model fit (Fig. 5). The top-
left panel of Figure 5 tests the assumption of
linearity of the dependent variable. The
regression line through the values is suffi-
ciently straight to not violate this assumption.
The top-right panel of Figure 5 displays the
residuals of the model fit. For this generalized
linear mixed-effects model, residuals are more
appropriately investigated by analyzing the dis-
tribution of residuals at each quantile. The
three dashed lines represent the pattern of
residuals at each quantile and are sufficiently
straight to conclude that there was no system-
atic bias in the distribution of residuals. The
bottom-left panel depicts the Q–Q (quantile–
quantile) plot, which plots the observed quan-
tiles against the predicted quantiles. Deviations
from the dotted line (slope of 1) should be
minimal. Finally, the bottom-right panel
depicts a histogram of the model fit residuals.
The residuals are sufficiently normally distrib-
uted to not violate this assumption.

The ability of the model to account for zero
inflation (i.e., a high frequency of zeros; in the
current dataset, primarily driven by zero or
near-zero selections of the control condition)
and overdispersion (i.e., greater variability
than would be expected given a certain distri-
bution) were also assessed. The model fit was
simulated (N = 1000) to create a dataset for
comparisons to the actual model-fit results. In
order to test the necessity of adjusting for
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Fig. 4. Single-subject data extracted from Ackerlund Brandt et al. (2015) regraphed here to serve as reference for
the mixed-effects model results and predictions.

Fig. 5. Regression diagnostics. Top left: test of linearity. Top right: plot of model fit residuals. Bottom left: q–q plot of
residuals. Bottom right: histogram of residuals.
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overdispersion, the ratio of the outcome vari-
ance to the grand mean of the outcome was
calculated with scores above 1 suggesting over-
dispersion (Balakrishnan et al., 2014). Overdis-
persion was apparent in the data
(var/mean = 4.350), justifying the use of the
negative binomial link function in the model,
however the model successfully accounted for
overdispersion in the data (overdispersion
χ2 = 0.923, p = .184). A significant number of
0’s (e.g., zero inflation) was also detected in
the data (zero-inflation χ2 = 460.651, p < .001).
The generalized linear mixed-effects model
also successfully accounted for zero inflation
(the predicted ratio of expected 0’s from
model fit to 0’s from simulated model fit was
0.983, p = .888).
The results of the generalized linear mixed-

effects model confirm the conclusions drawn
from visual analysis (Table 1) and provide addi-
tional information useful to behavior analysts.
The control condition served as the reference
group for all statistical analyses. Regression
coefficients should be interpreted as a log unit
change in the expected count of the outcome.
We also report the exponentially (i.e., exp)
transformed regression coefficient which can
be interpreted as the change in the expected
outcome. Overall, the model fitted the data
very well. The marginal R2 (i.e., variance
accounted for) value for only the fixed effects
was 0.732 and the conditional R2, the overall R2

which includes both the fixed and random
effects, was 0.964. A statistically significant main

effect for condition was found for both the
experimenter (b = 2.457, p < .001) and child
choices (b = 2.764, p < .001) indicating that par-
ticipants were 12 times more likely to select the
experimenter choice over the control choice
and 16 times more likely to select the child
choice over the control choice. The main effect
for session (b = -0.639, p < .01) was significant
suggesting that the distribution of choices
changed across time. The interaction of condi-
tion and session was also statistically significant
for the experimenter condition (b = -0.33,
p < .001) and the child condition (b = 0.863,
p < .001). However, the direction of these
effects were different, indicating that the likeli-
hood of choosing the experimenter choice
decreased across time whereas the likelihood
of choosing the child choice increased across
time. Finally, pairwise comparisons were con-
ducted to analyze the overall differences
between the three choice conditions. Both the
experimenter (M = 3.84) and child
(M = 10.649) choices were more frequently
selected than the control (M = .508; t
(28) = 3.329, p < .01; t(28) = 10.141, p < .001
respectively) choice. Also, the child choice was
more frequently selected than the experi-
menter choice (t(28) = 6.812, p < .001).

In summary, whereas both the experimenter
and child choices were chosen more fre-
quently than the control choice initially, for
many participants, the rate of selecting the
experimenter choice decreased while the rate
of selecting the child choice increased.

Table 1

Mixed-effects model results

Conditional Model Fixed Effects b Std. Error t-value

Intercept -0.758 0.496 -1.529
logSession -0.641 0.175 -3.674***
Condition[Experimenter] 2.462 0.521 4.724***
Condition[Child] 2.758 0.527 5.234***
Condition[Experimenter]*logSession -0.332 0.189 1.760
Condition[Child]*logSession 0.864 0.178 4.847***
Random Effects Variance Std. Dev.
Child (Intercept) 2.145 1.464
Condition[Experimenter] 2.434 1.560
Condition[Child] 2.539 1.593
logSession 0.003 0.057

*p < .05,
**p < .01,
***p < .001. Condition[Experiment] and other predictors in brackets indicate that that predictor is being compared to
the control condition.
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Figure 6 displays the model predictions for
each individual participant which confirms this
conclusion.

Discussion

Mixed-effects modeling is increasingly popu-
lar in psychological research, and especially
within behavior analysis (Young, 2017, 2018b).
Although more complex than standard infer-
ential statistics (e.g., t-test, ANOVA), mixed-
effects modeling addresses some of the
shortcomings of these traditional techniques
when applied to single-subject design data.
Specifically, we sought to address two barriers
of applying inferential statistics, including
compression of variability into mean scores
and the aggregation of behavior across time
into single data points. Towards this end, we
applied the mixed-effects modeling technique
to single-subject data collected by Ackerlund
Brandt et al. (2015). The results of our ana-
lyses largely confirmed the conclusions drawn
from visual inspection by the researchers and
importantly, our technique did not rely on
aggregating data into fewer data points.
Rather, our mixed-effects model was estimated

using all available data (i.e., frequency of
choice selection for every child and for each
condition at every session).

A greater understanding and application of
inferential statistics would be advantageous to
the field of behavior analysis. Other fields of
psychology, insurance companies, and even
parents could benefit from statistical analyses
of the effectiveness of single-subject designs
and behavioral analytic methods. Likewise,
funding mechanisms such as the National
Institutes of Health or the Institute of Educa-
tion Sciences are increasingly requesting statis-
tical outcomes to demonstrate treatment
efficacy (NIH, n.d.). Recent concerns over the
replicability of much of psychology has arisen
as large-scale replication studies have failed to
replicate many published findings (Carter &
McCullough, 2014; Open Science Collabora-
tion, 2015). While some of this can be attrib-
uted to dependence on statistical inference
and “p-hacking” (manipulating test parameters
until a desired outcome is obtained), we assert
that a principal cause of the recent “replication
crisis” is an over-reliance on between-group
designs. Between-group designs, particularly
between-group designs with small sample sizes,

Fig. 6. Mixed-effects model predictions for each condition for each participant.
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greatly increase the likelihood of committing
Type I error (Banerjee, Chitnis, Jadhav, Bha-
walkar, & Chaudhury, 2009).
Behavior analysis has much to offer to the

rest of psychology in regard to more effective
experimental design. Single-subject designs
(or any within-individual variant) are powerful
techniques for demonstrating experimental
prediction and control (Perone, 1999). How-
ever, we contend that the influence of such
methods is restricted by the inability to com-
municate with the rest of psychology using the
common language of statistical inference.
Here we present the mixed-effects model and
demonstrate how it can be applied to single-
subject data while addressing many of the his-
toric issues that have limited the application of
statistical inference in behavior analysis. We
believe behavior analysts should view mixed-
effects modeling as an additional tool to visual
analysis.
The results of our modeling suggested that

most participants preferred the child choice
over the control and experimenter choices. As
depicted in Figures 4 and 6, most participants
demonstrated greater preference for the child
choice as sessions progressed. Although exami-
nation of the original data via visual analysis
suggests that some participants (e.g., Jody,
Kelly) show relatively stable indifference
between the child and experimenter condi-
tions, these participants’ predicted values show
relatively greater changes in preference across
increasing sessions. This is because the model
accounts for all of the participants’ data, which
reflects general increases in selecting child
choice and decreases in selecting experi-
menter choices. It may be possible that for
these participants, more sessions assessed or
enhanced discrimination may have resulted in
greater differentiation between conditions.
That is, consistent with Ackerlund Brandt
et al. (2015), these results support the conclu-
sions that the child choice condition was most
frequently preferred while allowing and recog-
nizing that individual participant behavior
may differ (e.g., Jody, Kelly).
As noted earlier, these results do not

replace valuable visual inspection and no sci-
ence should blindly accept statistical results
without a thorough evaluation of the data-
collection methods and conclusions drawn
from the results (Ator, 1999), as well as striv-
ing to replicate novel findings. Indeed,

methods do exist to standardize and quantify
the visual analysis process (see Fisher, Kelley,
& Lomas, 2003) thereby reducing the likeli-
hood of committing Type I error. We note
that concordance between the visual inspec-
tion and statistical conclusions should be
expected if the results of the mixed-effects
model are to be of value to the behavior ana-
lyst, though they may not always show perfect
correspondence. When they do not corre-
spond, further investigation is necessary to
determine if the issue is a shortcoming of the
model or the visual inspection. However, we
believe that these additional analyses comple-
ment visual analysis, increase the impact of the
results, and improve our ability to communi-
cate with the rest of psychology. Furthermore,
the mixed-effects framework presented here
provides better prediction (and thus allows for
greater experimenter control) compared to
more basic statistical tests that would otherwise
be conducted (e.g., ANOVA). Although basic
statistical tests would indicate how the partici-
pants (as a group) allocate their responding to
the different conditions, they do not provide
the flexibility to model and predict more indi-
vidual deviations (from the group) in prefer-
ences such as those shown by Jody and Kelly.
Taken together, the addition of the mixed-
effects model analysis allows the behavior ana-
lyst to speak in the language of statistics—a set
of stimuli familiar to psychologists, policy
makers, and others outside of the behavior
analytic field. We believe complementing tra-
ditional approaches to evaluating single-
subject designs with statistical analyses “buys”
the behavior analyst greater credibility with
others and demonstrates the probability of
obtaining a difference as large if not larger
given the null hypothesis (e.g., no effect;
i.e., definition of a p-value).

There are limitations to this specific imple-
mentation of mixed-effects modeling to single-
subject design demonstrated here. First, we
could only access the data visually represented
by Ackerlund Brandt et al. (2015). We could
not obtain the entire data set of all 30 partici-
pants. The additional participants would have
improved the power of the analyses, though
we do not expect the results to have changed
substantially. Another limitation specific to this
implementation is that this was not a multiple-
baseline design. Mixed-effects analyses of
designs with multiple behavior rate changes
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(e.g., behavior increases and decreases) or
interrupted time-series designs, while possible,
will be more difficult to implement. Our hope
is that by encouraging the adoption of mixed-
effects models for analyzing single-subject
design data, greater interest in further advanc-
ing these analyses will develop.
There are also important general limitations

to the implementation of mixed-effects model-
ing to single-subject data, which can help
guide a priori experimental design prepara-
tions. Mixed-effects are more robust towards
smaller sample sizes compared to ANOVA and
multiple regression but they still require larger
sample sizes than many behavior analysts are
accustomed to use (McNeish & Stapleton,
2016). Conservative estimates suggest that a
minimum of 20 clusters (e.g., subjects for
single-subject designs) with approximately
20 observations (e.g., sessions) are necessary
to avoid parameter biases (Austin, 2010).
Bayesian implementations are also available
and growing in popularity and are particularly
robust for analyzing data with fewer clusters,
but these analyses are more complex (see cor-
responding articles in this Special Issue). Nev-
ertheless, it is not uncommon for an
experiment in behavior analysis to report find-
ings from eight or even four subjects. If
researchers are to implement these tech-
niques, larger sample sizes will be required.
Perhaps the largest limitation for many

researchers in implementing these methods is
the opportunity costs of mastering a complex
analytic technique. While we provide the R
code and sample data for the analyses, famil-
iarity with the analyses is necessary to avoid
model misspecifications. In response to this
limitation, we encourage interested
researchers to seek out collaborators, depart-
ment statisticians, and even encourage gradu-
ate students to advance their statistical
training. For those interested in a deeper
understanding, we recommend Multilevel Ana-
lyses: Techniques and Applications (Hox et al.,
2017) for a thorough introduction and Data
Analysis Using Regression and Multilevel/Hierarch-
ical Models (Gelman & Hill, 2007) for a more
advanced discussion.
We believe that for many, an introduction

to these methods and brief training in when
to implement them and how to interpret their
results would be a valuable point of growth for
behavior analysis as a field. We note that

although no single study will necessarily incor-
porate all the advantages that mixed-effects
models have over ANOVA and similar ana-
lyses, we are confident that the adoption of
these more advanced techniques would be
valuable to the individual researcher and to
the field more broadly. Mixed-effects model-
ing resolves many of the concerns of using
inferential statistics with few compromises
(e.g., slightly larger sample sizes, sometimes
increased complexity), would allow for meta-
analyses, and would further our influence in
the rest of psychology.
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